Citation: WEN Xiao-Yan,  XU Yan-Yan,  LI Mao-Gang,  ZHANG Tian-Long,  TANG Hong-Sheng,  LI Hua. Study on Transfer Performance of Methanol Gasoline Quantitative Analysis Model Based on Near-Infrared Spectroscopy Combined with Piecewise Direct Standardization[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1758-1765. doi: 10.19756/j.issn.0253-3820.211033 shu

Study on Transfer Performance of Methanol Gasoline Quantitative Analysis Model Based on Near-Infrared Spectroscopy Combined with Piecewise Direct Standardization

  • Corresponding author: TANG Hong-Sheng,  LI Hua, 
  • Received Date: 14 January 2021
    Revised Date: 8 June 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.22073074, 21873076, 21675123, 21605123).

  • The transfer performance of near infrared (NIR) spectrometry quantitative analysis model for methanol gasoline was studied based on piecewise direct standardization (PDS) algorithm. First, in the experimental environment, 20 methanol gasoline samples were prepared and their NIR spectra were collected. Secondly, the influence of different NIR wave ranges as input variables on the prediction performance of the model was explored. Thirdly, the effects of different spectral pretreatment methods on the NIR spectra were investigated. Based on the spectral data preprocessed by normalization (Nor) and multiple scattering correction (MSC), the initial PLS calibration model and PDS-PLS transfer model were constructed. Finally, to further verify the prediction performance of PDS-PLS model, PLS model based on original spectrum, domain adaptive (DA) and kernel domain adaptive (KDA) were constructed. The results showed that, compared with other PLS models, the model constructed by PDS-PLS calibration model had a significant improvement on the prediction performance. The coefficient of determination of prediction set (RP2) was 0.9984, the root mean square error of prediction set (RMSEP) was 0.0056, and the mean relative error (MREP) was 4.36%. The results showed that PDS-PLS was a simple and efficient model transfer method for NIR quantitative analysis of methanol gasoline.
  • 加载中
    1. [1]

      SHAN Y L, GUAN D B, MENG J, LIU Z, SCHROEDER H, LIU J H, MI Z F. Appl. Energy, 2018, 226:494-502.

    2. [2]

      LI M G, XUE J, DU Y, ZHANG T L, LI H. Energy Fuels, 2019, 33(12):12286-12294.

    3. [3]

      WANG X, GE Y S, LIU L L, PENG Z H, HAO L J, YIN H, DING Y, WANG J F. Appl. Energy, 2015, 157:134-143

    4. [4]

      JECZMIONEK L, DANEK B, PALUCHOWSKA M, KRASODOMSKI W. Energy Fuels, 2017, 31(1):504-513.

    5. [5]

      SHARMA N, AGARWAL A K. Energy Fuels, 2017, 31:4155-4164.

    6. [6]

    7. [7]

      DAI P P, GE Y S, LIN Y M, SU S, LIANG B. Fuel, 2013, 113:10-16.

    8. [8]

      LEE D M, LEE D H, HWANG I H. Energy Fuels, 2018, 32(10):10556-10562.

    9. [9]

      LI J R, DAI L K. Sens. Actuators, B, 2012, 173:385-390.

    10. [10]

      BLOCH M G, CALLEN R B, STOCKINGER J H. J. Chromatogr. Sci., 1977, 15(11):504-512.

    11. [11]

    12. [12]

    13. [13]

    14. [14]

      LUO S L, ZHANG E L, SU Y P, CHENG T M, SHI C M. Biomaterials, 2011, 32(29):7127-7138.

    15. [15]

    16. [16]

    17. [17]

      WULFERT F, KOK W T, SMILDE A K. Anal. Chem., 1998, 70(9):1761-1767.

    18. [18]

    19. [19]

    20. [20]

      GALVAN D, BONA E, BORSATO D, DANIELI E, KILLNER M H M. Anal. Chem., 2020, 92(19):12809-12816.

    21. [21]

      PEREIRA C F, PIMENTEL M F, GALVAO R K H, HONORATO F A, STRAGEVITCH L, MARTINS M N. Anal. Chim. Acta, 2008, 611(1):41-47.

    22. [22]

      HUANG G Z, CHEN X J, LI L M, CHEN X, YUAN L M, SHI W. Chemom. Intell. Lab. Syst., 2020, 201:103986.

    23. [23]

      GELADI P, KOWALSKI B. Anal. Chim. Acta, 1986, 185:1-17.

    24. [24]

      LANGERODI N R, ZELLINGER W, LUGHOFER E, PLATZ S S. Anal. Chem., 2018, 90(11):6693-6701.

    25. [25]

      FEUNDALE R N, WOODY N A, TAN H W, MYLES A J, BROWN S D, FERRE J. Chemom. Intell. Lab. Syst., 2002, 64(2):181-192.

    26. [26]

      CHEN Z P, LOVETT D, MORRIS J L. J. Process Control, 2011, 21(10):1467-1482.

    27. [27]

    28. [28]

  • 加载中
    1. [1]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    2. [2]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    3. [3]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    4. [4]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    5. [5]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    6. [6]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    7. [7]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    9. [9]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    10. [10]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-0. doi: 10.3866/PKU.WHXB202309027

    11. [11]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    12. [12]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

    13. [13]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    14. [14]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    15. [15]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    16. [16]

      Zixuan Jiang Yihan Wen Kejie Chai Weiming Xu . Exploring Chemistry Bridging Education from Data-Driven to Symbol Establishment within the Framework of AI Models. University Chemistry, 2025, 40(9): 132-141. doi: 10.12461/PKU.DXHX202502004

    17. [17]

      Yalu Ma Yun Tian Xiaofei Ma . DeepSeek Large Model: Implications for Inorganic Chemistry Teaching and Learning. University Chemistry, 2025, 40(9): 171-177. doi: 10.12461/PKU.DXHX202502109

    18. [18]

      Xiaolong Zhang Mingshan Jin Shaoli Liu Bingfei Yan Yun Li . Constructing High-Precision Potential Energy Surfaces Based on Physical Models: A Comprehensive Computational Chemistry Experiment. University Chemistry, 2025, 40(10): 257-262. doi: 10.12461/PKU.DXHX202411049

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

Metrics
  • PDF Downloads(13)
  • Abstract views(1072)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return