Citation: WANG En-Peng,  DU Lian-Yun,  ZHU Shuang,  HAN Yan-Yan,  LIU Shu-Ying,  CHEN Chang-Bao,  LI Ping-Ya. Investigation of Pharmacokinetic Behavior of Depression Rats Caused by UVB Radiation after Oral Administration of 20(S)-Ginsenoside Rg3 by Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(4): 618-627. doi: 10.19756/j.issn.0253-3820.211002 shu

Investigation of Pharmacokinetic Behavior of Depression Rats Caused by UVB Radiation after Oral Administration of 20(S)-Ginsenoside Rg3 by Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry

  • Corresponding author: CHEN Chang-Bao,  LI Ping-Ya, 
  • Received Date: 2 January 2021
    Revised Date: 31 January 2021

    Fund Project: Supported by the Jilin Province Science and Technology Development Project(No.20200404042YY), the National key Research and Development Projects (No.2019YFC1710704) and the Jiayi Biochemical Research and Development Center (Suzhou Industrial Park) Co., Ltd.

  • A novel approach was developed for simultaneous determination of 20(S)-ginsenoside Rg3 (G-Rg3) and its main metabolite 20(S)-ginsenoside Rh2 (G-Rh2) in rats plasma by UHPLC-QQQ MS to compare the pharmacokinetic behavior of normal and UVB-induced depression model after oral administration of G-Rg3. In this method, an Ascentis® Express C18 chromatographic column (5 mm×3.0 mm, 2.7 μm) was used for qualitative and quantitative analysis of G-Rg3 and G-Rh2 under gradient elution with 0.1% formic acid in water-acetonitrile as the mobile phase. Simultaneously, the flow rate was 0.3 mL/min and the injection volume of sample solution was 5 μL. The MS analysis was operated in multiple-reaction monitoring (MRM) mode using electrospray ionization (ESI) under negative ion mode. With 20(S)-ginsenoside Rb1 (G-Rb1) as internal standard, G-Rg3 and G-Rh2 were quantitatively analyzed. The ions for quantification were m/z 783.5/621.4, 621.4/459 and 1107.6/954.5, respectively. The results showed that the intra-day and inter-day precisions, recovery, matrix effect and stability could meet the pharmacokinetic analysis requirement, and the whole analysis procedure could be completed in 10 minutes. Both G-Rg3 and G-Rh2 had a good linear relationship in the concentration ranges of 2.0-2500 ng/mL and 2.0-2500 ng/mL (R2>0.9907). The results indicated that the metabolic process of G-Rg3 conformed to a two-compartment pharmacokinetic model after single oral administration in the normal and model groups. The t1/2α were (0.35±0.116) and (1.954±0.609) h, the t1/2β were (66.103±6.425) and (52.496±33.639) h, the AUC(0-t) were (346.75±14.108) and (551.374±117.557) mg·L/h, and the AUC(0-t) were (497.66±39.673) and (694.523±213.077) mg·L/h. There were significant differences in pharmacokinetic parameters between the two groups (p<0.01), which was concluded that the internal environment of depression model rats might have been changed by UVB radiation, might also affecting the absorption and metabolism of G-Rg3. This method was simple, rapid, selective and sensitive, and could be used for the pharmacokinetic analysis of Rg3 and Rh2. More important, it was suitable for pharmacokinetic study of G-Rg3 in vivo.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

    24. [24]

    25. [25]

    26. [26]

    27. [27]

    28. [28]

    29. [29]

    30. [30]

    31. [31]

    32. [32]

    33. [33]

    34. [34]

    35. [35]

    36. [36]

  • 加载中
    1. [1]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    2. [2]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    9. [9]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    12. [12]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    13. [13]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    14. [14]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    15. [15]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    19. [19]

      Hongling Liu Yue Xia Guang Xu Yafei Yang Chunhua Qu . Bitter Cold Medicine, Good for Healing. University Chemistry, 2025, 40(3): 328-332. doi: 10.12461/PKU.DXHX202405039

    20. [20]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

Metrics
  • PDF Downloads(12)
  • Abstract views(1152)
  • HTML views(207)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return