Citation: LIN Chu-Hui,  CHAI Rui-Ping,  ZHANG Lu,  FU Zhi-Bo,  ZHANG Hong-Yang,  ZHANG Min,  HU Ping. Determination of Six Kinds of Bile Acids in NiuhuangJiedu Tablets Using High Performance Liquid Chromatography Coupled with Charged Aerosol Detector[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 764-771. doi: 10.19756/j.issn.0253-3820.210910 shu

Determination of Six Kinds of Bile Acids in NiuhuangJiedu Tablets Using High Performance Liquid Chromatography Coupled with Charged Aerosol Detector

  • Corresponding author: HU Ping, huping@ecust.edu.cn
  • Received Date: 31 December 2021
    Revised Date: 27 February 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.81973285).

  • A high performance liquid chromatography-charge aerosol detector (HPLC-CAD) method for determination of six kinds of bile acids(Glycocholicacid, hyodeoxycholic acid, cholic acid, glycodeoxycholic acid, chenodeoxycholic acid and deoxycholic acid) in Niuhuang Jiedu tablets was developed. The tablet samples were extracted by ultrasonication in 70% methanol and concentrated under nitrogen flow. The separation of bile acids was achieved on an Agilent Poroshell 120 EC C18 column (4.6 mm × 100 mm, 2.7 μm) with gradient elution using methanol and aqueous solution containing 0.1% formic acid and 5 mmol/L ammonium formate. CAD evaporation temperature was set at 55℃ and the power function value (PFV) was 1.35. The linearity ranges were 2.10-972 μg/mL for glycocholic acid, 2.09-1046 μg/mL for hyodeoxycholic acid, 2.05-978 μg/mL for cholic acid, 2.56-1022 μg/mL for glycodeoxycholic acid, 1.25-658 μg/mL for chenodeoxycholic acid and 2.05-1025 μg/mL for deoxycholic acid, respectively. All relative coefficients (R2) were higher than 0.9991. The limits of detection and the limits of quantitation ranged from 0.86 to 1.53 μg/mL and 1.20 to 2.56 μg/mL, respectively. The average recoveries of six kinds of bile acids were in the range of 94.2%-105.3% with RSD ≤ 1.63%. The method was used to determine the real tablet samples, and the results indicated that the contents of six bile acids had an obvious difference among the Niuhuang Jiedu tablets of different manufacturers. The HPLC-CAD method for the determination of six kinds of bile acids was sensitive, accurate and reliable, which could be applied to evaluate the quality of the Niuhuang Jiedu tablets.
  • 加载中
    1. [1]

    2. [2]

      HU Z, HE L C, ZHANG J, LUO G A.J. Chromatogr. B:Anal. Technol. Biomed. Life Sci., 2006, 837(1-2):11-17.

    3. [3]

    4. [4]

      CHARLES T, ROBERTO P, MARK P, JOHAN A, KRISTINA S. Nat. Rev. Drug Discovery, 2008, 7(8):678-693.

    5. [5]

      YANG F, HE Y Q, LIU H X, TSUEI J, JIANG X Y, YANG L, WANG Z T, WAN Y J Y. Biochem. Pharmacol., 2014, 91(4):483-489.

    6. [6]

      PERINO A, POLS T W H, NOMURA M, STEIN S, PELLICCIARI R, SCHOONJANS K. J. Clin. Invest., 2014, 124(12):5424-36.

    7. [7]

      REITER S, DUNKEL A, DAWID C, HOFMANN T. J. Agric. Food Chem., 2021, 69(36):10572-10580.

    8. [8]

      ASHLEY C J, OMAR G Q, VALERIE S F, PHILIPPE Z, CARMELO Q, LUIGI B, ANNE T, JULIE C, DANIELA F, MARCUS H, CATHERINE P, VINCENT S, CAMILLE A, SANDRINE Q, VALENTINE G, NATHALIE H, ALESSIA P, ALEXIA D, MARLENE M, THIERRY L L, SAMANTHA C, NATHALIE D, ASTRID C, DELPHINE G, BENOIT D, GILLES M, DAVID D, FREDRIK B, VINCENT P, GIOVANNI M, BART S, KRISTINA S, DANIELA C. Cell Metab., 2021, 33(7):1483-1492.

    9. [9]

      BETHAN L C, LESLIE R S, KEVIN J W, PAULINE M, ANGELA C, KELSEY E J, ALVIVN P C, MADELAINE C B S, ANNIKA W, JULIANNE W A, WILLIAM B, JAMES W, ANNA C C, LIU Y Y, ANDERS T, PETER J M, BRIAN G D, JULIA J M, HANNS U M, ELIZABETH J T, PETER A E, THOMAS Q A V. Cell Metab., 2021, 33(8):1671-1684.

    10. [10]

      LUO M M, YAN J B, WU L Y, WU J T, CHEN Z, JIANG J P, CHEN Z Y, HE B H. J. Immunol. Res., 2021, 2021:2264737.

    11. [11]

      WU Y M, WANG X C, WU Q Z, WU X P, LIN X C, XIE Z H. Anal. Methods, 2010, 2(12):1927-1933.

    12. [12]

      SHI Y, XIONG J, SUN D M, LIU W, WEI F, MA S C, LIN R C. J. Sep. Sci., 2015, 38(16):2753-2762.

    13. [13]

      KONG W J, JIN C, LIU W, XIAO X H, ZHAO Y L, LI Z L, ZHANG P, LI X F. Food Chem., 2010, 120(4):1193-1200.

    14. [14]

      XIONG J, ZHENG T J, SHI Y, WEI F, MA S C, HE L, WANG S C, LIU X S. J. Pharm. Biomed. Anal., 2019, 174:50-56.

    15. [15]

      CHEN M J, LIU C, SHEN Y M, ZOU J F, ZHANG Z M, WAN Y, YANG L, JIANG S, QIAN D W, DUAN J N. J. Chromatogr. Sci., 2021, 59(9):871-876.

    16. [16]

    17. [17]

      KAKIYAMA G, MUTO A, TAKEI H, NITTONO H, MURAI T, KUROSA W A T, HOFMANNA F, PANDAK W M, BAJAJJS J. Lipid Res., 2014, 55(5):978-990.

    18. [18]

      ZHENG J P, YE C, HU B F, YANG H B, YAO Q F, MA J, LIU Y, LIU H T. Biotechnol. Appl. Biochem., 2020, 68(6):1332-1341.

    19. [19]

      LIU W X, CHENG X L, GUO X H, HU X R, WEI F, MA S C. Pharm. Biomed. Anal., 2020, 179:1-8.

    20. [20]

      SHAFAEI A, REES J, CHRISTOPHERSEN C T, DEVINE A, BROADHURST D, BOYCE M C. Anal. Chim. Acta, 2021, 1150:1-9.

    21. [21]

      YANG M T, TAN D P, LU A J, QIN L, WANG C H, LING H, LU Y L, HE Y Q. Int. J. Anal. Chem., 2021, 2021:5209618.

    22. [22]

      WU L L, ZHANG S N, ZHOU L H, XIONG H S, GONG X C, ZHANG S J, PAN J Y, QU H B. Phytochem. Anal., 2021, 32(6):942-956.

    23. [23]

      LIU A X, XU T T, YANG W N, ZHOU D D, SHA Y W. J. Anal. Methods Chem., 2021, 2021:6616854.

    24. [24]

      XIE M J, YU Y T, ZHU Z Y, DENG L P, REN B, ZHANG M. J. Pharm. Biomed. Anal., 2021, 201:114087.

    25. [25]

      XU X Y, WANG S M, WANG H M, HU W D, HAN L F, CHEN B X, LI X, WANG H D, LI H F, GAO X M, GUO D, YANG W Z. J. Chromatogr. A, 2021, 1655:462504.

    26. [26]

      XIE Q, TIAN H M, HUAN X H, CAO L L, WANG Y, CHENG X M, NING C G, HU F D, WANG C H. Phytochem. Anal., 2022, 33:262-271.

    27. [27]

      NGUYEN H T, VU-HUYNH K L, NGUYEN H M, LE H T, LE T H V, PARK J L, NGUYEN M D. Molecules, 2021, 26(17):5373.

    28. [28]

      WANG C, CHAO I C, QIN Y, ZHANG W X, ZHAO J, ZHANG Q W. J. Pharm. Biomed. Anal., 2022, 210:114545.

    29. [29]

      VERTZONI M, ARCHONTAKI H, REPPAS C. J. Lipid Res., 2008, 49(12):2690-2695.

    30. [30]

    31. [31]

      PAWELLEK R, MUELLNER T, GAMACHE P, HOLZGRABE U. J.Chromatogr. A, 2021, 1637:461844.

    32. [32]

      GAMACHE P H. Charged Aerosol Detection for Liquid Chromatography and Related Separation Techniques. New Jersey:John Wiley & Sons, 2017.

    33. [33]

      AHMAD I A H, BLASKO A, WANG H, LU T, MANGION I, REGALADO E L. J. Chromatogr. A, 2021, 1641:461997.

    34. [34]

  • 加载中
    1. [1]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    2. [2]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    3. [3]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    4. [4]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    5. [5]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    8. [8]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    9. [9]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    10. [10]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    11. [11]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    14. [14]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    15. [15]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    16. [16]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    18. [18]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    19. [19]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    20. [20]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

Metrics
  • PDF Downloads(13)
  • Abstract views(989)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return