Citation: MA Hong-Ting,  CHENG Pei-Hao,  ZHU Nan. Research and Application Progress in Wearable Electrochemical Biosensors[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1613-1626. doi: 10.19756/j.issn.0253-3820.210901 shu

Research and Application Progress in Wearable Electrochemical Biosensors

  • Corresponding author: ZHU Nan, nanzhu@dlut.edu.cn
  • Received Date: 22 December 2021
    Revised Date: 22 February 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.22074010) and the Project of Dalian Science and Technology Bureau, China (No.2019J12SN54).

  • Wearable electrochemical biosensors have attracted extensive attention with the development of Internet of Things. Liquid conductors, conductive polymer films and hydrogels are used to fabricate wearable electronics, leading to excellent mechanical and sensing properties of devices. As-prepared wearable sensing devices have been widely used in various applications, including healthcare monitoring and environmental analysis, for great convenience of human life. However, several issues, such as aesthetics, invisibility and biocompatibility, still limit their practical application. Herein, recent advances and process in wearable biosensors are reviewed, and the challenges of developing wearable electrochemical biosensors are also discussed, providing a reference for the development of miniaturized/integrated wearable electrochemical biosensors with good sensitivity.
  • 加载中
    1. [1]

      PROMPHET N, UMMARTYOTIN S, NGEONTAE W, PUTHONGKHAM P, RODTHONGKUM N. Anal. Chim. Acta, 2021, 33:8643.

    2. [2]

      CHEN S W, QI J M, FAN S C, QIAO Z, YEO J C, LIM C T. Adv. Healthc. Mater., 2021, 10(17):e2100116.

    3. [3]

      SEMPIONATTOJ R, MONTIEL V R, VARGAS E, TEYMOURIAN H, WANG J. ACS Sens., 2021, 6(5):1745-1760.

    4. [4]

      BARFIDOKHTA A, MISHRA R K, SEENIVASAN R, LIU S Y, HUBBLE L J, WANG J, HALL D. Sens. Actuators, B, 2019, 206:126422.

    5. [5]

      MOONLA C, GOUD K Y, TEYMOURIAN H, TANGKUARAM T, INGRANDE J, SURESH P, WANG J. Talanta, 2020, 218:121205.

    6. [6]

      MISHRA R K, SEMPIONATTO J R, LI Z H, BROWN C, GALDINO N M, SHAH R, LIU S Y, HUBBLE L J, BAGOT TAPERT S, WANG J. Talanta, 2020, 211:120757.

    7. [7]

      LING Y, AN T, YAP L, ZHU B, GONG S, CHENG W. Adv. Mater., 2020, 32(18):1904664.

    8. [8]

      GAO Y J, YU L T, YEO J C, LIM C T. Adv. Mater., 2020, 32(15):1902133.

    9. [9]

      SELVAM A P, MUTHUKUMAR S, KAMAKOTI V, PRASAD S. Sci. Rep., 2016, 6:23111.

    10. [10]

      HUBBLE L J, WANG J. Electroanalysis, 2019, 31:428-436.

    11. [11]

      MACHMOUDPOUR M, SAADATI A, HASANZADEH M, KHOLAFAZAD-KORDASHT H. J. Mol. Recognit., 2021, 34(12):e2923.

    12. [12]

      WANG C F, HE T, CHENG J L, GUAN Q, WANG B. Adv. Funct. Mater., 2020, 30(12):2004430.

    13. [13]

      BARIVA M, LI L, GHATTAMANENI R, AHN C H, NYEIN H Y Y, TAI L C, JAVEY A. Sci. Adv., 2020, 6:eabb8308.

    14. [14]

      PARRILLA M, CANOVAS R, JEERAPAN I, ANDRADE F J, WANG J. Adv. Healthc. Mater., 2016, 5(9):996-1001.

    15. [15]

      CIUI B, TERTIS M, CERNAT A, SANDULESCU R, WANG J, CRISTEA C. Anal. Chem., 2018, 90(12):7761-7768.

    16. [16]

      XU X Y, YAN B, LIAN X. Nanoscale, 2018, 10(28):13722-13729.

    17. [17]

      YAN J, LU Y, CHEN G J, YANG M, GU Z. Chem. Soc. Rev., 2018, 47(8):2518-2533.

    18. [18]

      DONG C Q, LEBER A, GUPTA T D, CHANDRAN R, VOLPI M, QU Y P, NGUYEN-DANG T, BARTOLOMEI N, YAN W, SORIN F. Nat. Commun., 2020, 11:3537.

    19. [19]

      GUO H S, HAN Y, ZHAO W Q, YANG J, ZHANG L. Nat. Commun., 2020, 11:2037.

    20. [20]

      BARTLETT M D, KAZEM N, POWELL-PALM M J, HUANG X H, SUN W H, MALEN J A, MAJIDI C. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(9):2143-2148.

    21. [21]

      ZHU S, SO J H, MAYS R, DESAI S, BARNES W R, POURDEYHIMI B, DICKEY M D. Adv. Funct. Mater., 2013, 23(18):2308-2314.

    22. [22]

      ZHENG L J, ZHU M M, WU B H, LI Z L, SUN S T, WU P Y. Sci. Adv., 2021(7):eabg4041.

    23. [23]

      SAVAGATRUP S, PRINTZ A D, CONNOR F O'C, ZARETSKI A V, LIPOMI D J. Chem. Mater., 2014, 26(10):3028-3041.

    24. [24]

      SPITERI M N, WILLIAMS C E, BOUE F. Macromolecules, 2007, 40(18):6679-6691.

    25. [25]

      HE X Y, SHI J, HAO Y N, WANG L M, QIN X H, YU J Y. Compo. Commun., 2021, 27:100822.

    26. [26]

      TRINGIDES C M, VACHICOURAS N, DE LAZARO I, WANG H, TROUILLET A, SEO B R, ELSEGUI-ARTOLA A, FALLEGGER F, SHIN Y Y, CASIRAGHI C, KOSTARELOS K, LACOUR S P, MOONEY D J. Nat. Nanotechnol., 2021, 16(9):1019-1029

    27. [27]

      JIN R, XU J J, DUAN L J, GAO G H. Carbohydr. Polym., 2021, 268:118240.

    28. [28]

      QIN H, ZHANG T, LI N, CONG H P, YU S H. Nat. Commun., 2019, 10:2202.

    29. [29]

      HAN L, YAN L W, WANG M L, WANG K F, FANG L M, ZHOU J, FANG J, REN F Z, LU X. Chem. Mater., 2018, 30(10):5561-5572.

    30. [30]

      XU J J, JIN R, DUAN L J, REN X Y, GAO G H. Carbohydr. Polym., 2019, 211:1-10.

    31. [31]

      HU S Q, ZHOU L, TU L J, DAI C, FAN L, ZHANG K J, YAO T T, CHEN J Q, WANG Z G, XING J, FU R, YU P, TAN G X, DU J Q, NING C Y. J. Mater. Chem. B, 2019, 7(15):2389-2397.

    32. [32]

      YANG J L, HAN Y, LIN J W, ZHU Y, WANG F L, DENG L F, ZHANG H Y, XU X Y, CUI W G. Small, 2020, 16(44):2004519.

    33. [33]

      WU J Z, LI G, YE T J, LU G H, LI R, DENG L F, WANG L, CAI M, CUI W G. Chem. Eng. J., 2020, 393:124715.

    34. [34]

      LIM C, SHIN Y, JUNG J, KIM J H, LEE A, KIM D H. Appl. Mater., 2019, 7:031502.

    35. [35]

      YU Z C, XU J H, GONG H X, LI Y X, LI L, WEI Q H, TANG D P. ACS Appl. Mater. Interfaces, 2022, 14(4):5101-5111.

    36. [36]

      ZHU F B, LIN J, WU Z L, QU S X, YIN J, QIAN J, ZHENG Q. ACS Appl. Mater. Interfaces, 2018, 10(16):13685-13692.

    37. [37]

      CINTI S, ARDUINI F, MOSCONE D, PALLESCHI G, GONZALEZ-MACIA L, KILLARD A J. Sens. Actuators, B, 2015, 221:187-190.

    38. [38]

      GUO S J, WEN D, DONG S J, WANG E K. Talanta, 2009, 77(4):1510-1517.

    39. [39]

      WEI H, WANG E. Anal. Chem., 2008, 80(6):2250-2254.

    40. [40]

      LU S Y, CHEN Y H, FANG X F, FENG X. J. Appl. Electrochem., 2017, 47(11):1261-1271.

    41. [41]

      MA J L, JIANG Y, SHEN L X, MA H T, SUN T R, LV F J, KIRAN A, ZHU N. Biosens. Bioelectron., 2019, 144:111637.

    42. [42]

      JIANG Y, XIA T, SHEN L X, MA J L, MA H T, SUN T R, LV F J, ZHU N. ACS Catal., 2021, 11(5):2949-2955.

    43. [43]

      FRAGA C G. Mol. Aspects Med., 2005, 26:235-244.

    44. [44]

      GAO W, NYEIN H Y Y, SHAPAR Z, FAHAD H M, CHEN K, EMAMINEJAD S, GAO Y J, TAI L C, OTA H, WU E, BULLOCK J, ZENG Y, LIEN D H, JVEY A. ACS Sens., 2016, 1(7):866-874.

    45. [45]

      RUSLAN N I, LIM D C K, AHMAD S A A, AZIZ S F N A, SUPIAN F L, YUSOF N A. J. Electroanal. Chem., 2017, 799:497-504.

    46. [46]

      JIANG Y, SHEN L X, MA J L, MA H T, SU Y, ZHU N. Anal. Chem., 2021, 93(4):2603-2609.

    47. [47]

      JIANG Y, CUI S J, XIA T, SUN T R, TAN H X, YU F, SU Y, WU S L, WANG D J, ZHU N. Anal. Chem., 2020, 92(21):14536-14541.

    48. [48]

      MEGARBANE B. Open Access Emerg. Med., 2010, 2:67-75.

    49. [49]

      NARAYANAMOORTHY B, DATTA K K R, ESWARAMOORTHY M, BALAJI S. ACS Catal., 2014, 4(10):3621-3629.

    50. [50]

      JIANG Y, MA J L, LV J, MA H T, XIA H B, WANG J, YANG C, XUE M Q, LI G Y, ZHU N. ACS Sens., 2019, 4(1):152-160.

    51. [51]

      MA H T, JIANG Y, MA J L, MA X L, XUE M Q, ZHU N. Anal. Chem., 2020, 92(8):5897-5903.

    52. [52]

      MANNA B, CHAKRABARTI I, GUHA P K. IEEE Sens. J., 2020, 21(3):2544-2551.

    53. [53]

      GAO W, EMAMINEJAD S, NYEIN H Y Y, CHALLA S, CHEN K, PECK A, FAHAD H M, OTA H, SHIRAKI H, KIRIYA D, LIEN D H, BROOKS G A, DAVIS R W, JAVERY A. Nature, 2016, 529(7587):509-514.

    54. [54]

      LIPANI L, DUPONT B G R, DOUNGMENE F, MARKEN F, TYRRELL R M, GUY R H, ILIE A. Nat. Nanotechnol., 2018, 13:504-511.

    55. [55]

      PU X, LI L X, LIU M M, JIANG C Y, DU C H, ZHAO Z F, HU W G, WANG Z L. Adv. Mater., 2016, 28(1):98-105.

    56. [56]

      XU J T, CHEN Y H, DAI L M. Nat. Commun., 2015, 6:8103.

    57. [57]

      WANG J Q, PEI Z X, LIU J, HU M M, FENG Y P, WANG P P, WANG H, NIE N Y, WANG Y Y, ZHI C Y, HUANG Y. Nano Energy, 2019, 65:104052.

    58. [58]

      SUN T R, SHEN L X, JIANG Y, MA J L, LV F J, MA H T, CHEN A W, ZHU N. ACS Appl. Mater. Interfaces, 2020, 12(19):21779-21787.

    59. [59]

      LV F J, MA H T, SHEN L X, JIANG Y, SUN T R, MA J L, GENG X D, KIRAN A, ZHU N. ACS Appl. Mater. Interfaces, 2021, 13(25):29780-29787.

    60. [60]

      MA H T, LV F J, SHEN L X, YANG K Z, JIANG Y, MA J L, GENG X D, SUN T R, PAN Y Z, XIE Z, XUE M Q, ZHU N. Energy Environ. Mater., 2022, 5(3):986-995.

    61. [61]

      JIN Z H, LIU Y L, CHEN J J, CAI S L, XU J Q, HUANG W H. Anal. Chem., 2017, 89(3):2032-2038.

    62. [62]

      LEE S, REUVENY A, REEDER J, LEE S, JIN H, LIU Q H, YOKOTA T, SEKITANI T, ISOYAMA T, ABE Y, SUO Z G, SOMEYA T. Nat. Nanotechnol., 2016, 11(5):472-478.

    63. [63]

      NAG A, SIMORANGKIR R B V B, VALENTIN E, BJORNINEN T, UKKONEN L, HASHMI R M, MUKHOPADHYAY C. IEEE Access, 2018, 4:2169-3536.

    64. [64]

      LI R A, CHEN G X, HE M H, TIAN J F, SU B. J. Mater. Chem. C, 2017, 5(33):8475-8481.

    65. [65]

      SAVEH-SHEMSHAKI N, BAGHERZADEH R, LATIFI M. Org. Electron., 2019, 70:131-139.

    66. [66]

      NAGHDI S, RHEE K Y, HUI D, PARK S J. Coatings, 2018, 8(8):278.

    67. [67]

      VITALE S, LARAMEE-MILETTE B, AMATO M E, HANAN G S, TUCCITTO N, LICCIARDELLO A. Nanoscale, 2019, 11(11):4788-4793.

    68. [68]

      SHAO Y L, ZHAO J, YUAN J Y, ZHAO Y L, LI L L. Angew. Chem., Int. Ed., 2021, 60(16):8923-8931.

    69. [69]

      PARK J, JEONG Y, KIM J, GU J M, WANG J, PARK I. Biosens. Bioelectron., 2020, 148:111822.

    70. [70]

      LUQUE G C, PICCHIO M L, MARTINS A P S, DOMINGUEZ-ALFARO RAMOS N, AGUA I D, MARCHIORI B, MECERREYES D, MINARI R J, TOME L C. Adv. Electron. Mater., 2021:2100178.

    71. [71]

      GUO H S, BAI M, WEN C Y, LIU M, TIAN S, XU S J, LIU X M, MA Y M, CHEN P G, LI Q S, ZHANG X Y, YANG J, ZHANG L. J. Colloid. Interface Sci., 2021, 600:561-571.

    72. [72]

      GAYLORD S T, DINH T L, GOLDMAN E R, ANDERSON G P, NGAN K C, WALT D R. Anal. Chem., 2015, 87(13):6570-6577.

    73. [73]

      KADIMISETTY K, MALLA S, SARDESAI N P, JOSHI A A, FARIA R C, LEE N H, RUSING J F. Anal. Chem., 2015, 87(8):4472-4478.

    74. [74]

      ZRIBI B, ROY E, PALLANDRE A, CHEBIL S, KOUBAA M, MEJRI N, GOMEZ H M, SOLA C, KORRI-YOUSSOUFI H, HAGHIRI-GOSNET A M. Biomicrofluidics, 2016, 10(1):014115.

    75. [75]

      EMMING S, SCHRODER K. Science, 2019, 365(6460):1375-1376.

    76. [76]

      LI F, MAO X H, LI F, LI M, SHEN J L, GE Z L, FAN C H, ZUO X L. J. Am. Chem. Soc., 2020, 142(22):9975-9981.

    77. [77]

      WANG J, YANG D M, GUO X G, SONG Q T, TAN L X, DONG L C. Anal. Chim. Acta, 2020, 1100:240-249.

    78. [78]

      ZHANG B L, JIN X, SUN L H, GUO X D. Microchem. J., 2020, 158:105217.

    79. [79]

      BANKAR S B, BULE M V, SINGHAL R S, ANANTHANARAYAN L. Biotechnol. Adv., 2009, 27(4):489-501.

    80. [80]

      LOYPRASERT S, HEDSTRON M, THAVARUNGKUL P, KANATHARANA P, MATTIASSON B. Biosens. Bioelectron., 2010, 25:1977-1983.

    81. [81]

      SEHIT E, DRZAZGOWSKA J, BUCHENAU D, YESILDAG C, LENSEN M, ALTINAS Z. Biosens. Bioelectron., 2020, 165:112432.

    82. [82]

      DIOUF A, BOUCHIKHI B, EL BARI N. Mater. Sci. Eng., C, 2019, 98:1196-1209.

  • 加载中
    1. [1]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    3. [3]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    4. [4]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    5. [5]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    6. [6]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    8. [8]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 100020-0. doi: 10.3866/PKU.WHXB202310004

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    13. [13]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    14. [14]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    15. [15]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    16. [16]

      Run Yang Huajie Pang Huiping Zang Ruizhong Zhang Zhicheng Zhang Xiyan Li Libing Zhang . Artificial Intelligence-Enabled DNA Computing: Exploring New Frontiers in Bioinformatics. University Chemistry, 2025, 40(9): 107-117. doi: 10.12461/PKU.DXHX202412135

    17. [17]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    18. [18]

      Lijun Yang . Thoughts and Practices on Enhancing Students’ Comprehension through Visualized Instruction of Structural Chemistry. University Chemistry, 2025, 40(10): 295-302. doi: 10.12461/PKU.DXHX202411048

    19. [19]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    20. [20]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

Metrics
  • PDF Downloads(95)
  • Abstract views(2108)
  • HTML views(426)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return