Citation: MA Hong-Ting,  CHENG Pei-Hao,  ZHU Nan. Research and Application Progress in Wearable Electrochemical Biosensors[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1613-1626. doi: 10.19756/j.issn.0253-3820.210901 shu

Research and Application Progress in Wearable Electrochemical Biosensors

  • Corresponding author: ZHU Nan, nanzhu@dlut.edu.cn
  • Received Date: 22 December 2021
    Revised Date: 22 February 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.22074010) and the Project of Dalian Science and Technology Bureau, China (No.2019J12SN54).

  • Wearable electrochemical biosensors have attracted extensive attention with the development of Internet of Things. Liquid conductors, conductive polymer films and hydrogels are used to fabricate wearable electronics, leading to excellent mechanical and sensing properties of devices. As-prepared wearable sensing devices have been widely used in various applications, including healthcare monitoring and environmental analysis, for great convenience of human life. However, several issues, such as aesthetics, invisibility and biocompatibility, still limit their practical application. Herein, recent advances and process in wearable biosensors are reviewed, and the challenges of developing wearable electrochemical biosensors are also discussed, providing a reference for the development of miniaturized/integrated wearable electrochemical biosensors with good sensitivity.
  • 加载中
    1. [1]

      PROMPHET N, UMMARTYOTIN S, NGEONTAE W, PUTHONGKHAM P, RODTHONGKUM N. Anal. Chim. Acta, 2021, 33:8643.

    2. [2]

      CHEN S W, QI J M, FAN S C, QIAO Z, YEO J C, LIM C T. Adv. Healthc. Mater., 2021, 10(17):e2100116.

    3. [3]

      SEMPIONATTOJ R, MONTIEL V R, VARGAS E, TEYMOURIAN H, WANG J. ACS Sens., 2021, 6(5):1745-1760.

    4. [4]

      BARFIDOKHTA A, MISHRA R K, SEENIVASAN R, LIU S Y, HUBBLE L J, WANG J, HALL D. Sens. Actuators, B, 2019, 206:126422.

    5. [5]

      MOONLA C, GOUD K Y, TEYMOURIAN H, TANGKUARAM T, INGRANDE J, SURESH P, WANG J. Talanta, 2020, 218:121205.

    6. [6]

      MISHRA R K, SEMPIONATTO J R, LI Z H, BROWN C, GALDINO N M, SHAH R, LIU S Y, HUBBLE L J, BAGOT TAPERT S, WANG J. Talanta, 2020, 211:120757.

    7. [7]

      LING Y, AN T, YAP L, ZHU B, GONG S, CHENG W. Adv. Mater., 2020, 32(18):1904664.

    8. [8]

      GAO Y J, YU L T, YEO J C, LIM C T. Adv. Mater., 2020, 32(15):1902133.

    9. [9]

      SELVAM A P, MUTHUKUMAR S, KAMAKOTI V, PRASAD S. Sci. Rep., 2016, 6:23111.

    10. [10]

      HUBBLE L J, WANG J. Electroanalysis, 2019, 31:428-436.

    11. [11]

      MACHMOUDPOUR M, SAADATI A, HASANZADEH M, KHOLAFAZAD-KORDASHT H. J. Mol. Recognit., 2021, 34(12):e2923.

    12. [12]

      WANG C F, HE T, CHENG J L, GUAN Q, WANG B. Adv. Funct. Mater., 2020, 30(12):2004430.

    13. [13]

      BARIVA M, LI L, GHATTAMANENI R, AHN C H, NYEIN H Y Y, TAI L C, JAVEY A. Sci. Adv., 2020, 6:eabb8308.

    14. [14]

      PARRILLA M, CANOVAS R, JEERAPAN I, ANDRADE F J, WANG J. Adv. Healthc. Mater., 2016, 5(9):996-1001.

    15. [15]

      CIUI B, TERTIS M, CERNAT A, SANDULESCU R, WANG J, CRISTEA C. Anal. Chem., 2018, 90(12):7761-7768.

    16. [16]

      XU X Y, YAN B, LIAN X. Nanoscale, 2018, 10(28):13722-13729.

    17. [17]

      YAN J, LU Y, CHEN G J, YANG M, GU Z. Chem. Soc. Rev., 2018, 47(8):2518-2533.

    18. [18]

      DONG C Q, LEBER A, GUPTA T D, CHANDRAN R, VOLPI M, QU Y P, NGUYEN-DANG T, BARTOLOMEI N, YAN W, SORIN F. Nat. Commun., 2020, 11:3537.

    19. [19]

      GUO H S, HAN Y, ZHAO W Q, YANG J, ZHANG L. Nat. Commun., 2020, 11:2037.

    20. [20]

      BARTLETT M D, KAZEM N, POWELL-PALM M J, HUANG X H, SUN W H, MALEN J A, MAJIDI C. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(9):2143-2148.

    21. [21]

      ZHU S, SO J H, MAYS R, DESAI S, BARNES W R, POURDEYHIMI B, DICKEY M D. Adv. Funct. Mater., 2013, 23(18):2308-2314.

    22. [22]

      ZHENG L J, ZHU M M, WU B H, LI Z L, SUN S T, WU P Y. Sci. Adv., 2021(7):eabg4041.

    23. [23]

      SAVAGATRUP S, PRINTZ A D, CONNOR F O'C, ZARETSKI A V, LIPOMI D J. Chem. Mater., 2014, 26(10):3028-3041.

    24. [24]

      SPITERI M N, WILLIAMS C E, BOUE F. Macromolecules, 2007, 40(18):6679-6691.

    25. [25]

      HE X Y, SHI J, HAO Y N, WANG L M, QIN X H, YU J Y. Compo. Commun., 2021, 27:100822.

    26. [26]

      TRINGIDES C M, VACHICOURAS N, DE LAZARO I, WANG H, TROUILLET A, SEO B R, ELSEGUI-ARTOLA A, FALLEGGER F, SHIN Y Y, CASIRAGHI C, KOSTARELOS K, LACOUR S P, MOONEY D J. Nat. Nanotechnol., 2021, 16(9):1019-1029

    27. [27]

      JIN R, XU J J, DUAN L J, GAO G H. Carbohydr. Polym., 2021, 268:118240.

    28. [28]

      QIN H, ZHANG T, LI N, CONG H P, YU S H. Nat. Commun., 2019, 10:2202.

    29. [29]

      HAN L, YAN L W, WANG M L, WANG K F, FANG L M, ZHOU J, FANG J, REN F Z, LU X. Chem. Mater., 2018, 30(10):5561-5572.

    30. [30]

      XU J J, JIN R, DUAN L J, REN X Y, GAO G H. Carbohydr. Polym., 2019, 211:1-10.

    31. [31]

      HU S Q, ZHOU L, TU L J, DAI C, FAN L, ZHANG K J, YAO T T, CHEN J Q, WANG Z G, XING J, FU R, YU P, TAN G X, DU J Q, NING C Y. J. Mater. Chem. B, 2019, 7(15):2389-2397.

    32. [32]

      YANG J L, HAN Y, LIN J W, ZHU Y, WANG F L, DENG L F, ZHANG H Y, XU X Y, CUI W G. Small, 2020, 16(44):2004519.

    33. [33]

      WU J Z, LI G, YE T J, LU G H, LI R, DENG L F, WANG L, CAI M, CUI W G. Chem. Eng. J., 2020, 393:124715.

    34. [34]

      LIM C, SHIN Y, JUNG J, KIM J H, LEE A, KIM D H. Appl. Mater., 2019, 7:031502.

    35. [35]

      YU Z C, XU J H, GONG H X, LI Y X, LI L, WEI Q H, TANG D P. ACS Appl. Mater. Interfaces, 2022, 14(4):5101-5111.

    36. [36]

      ZHU F B, LIN J, WU Z L, QU S X, YIN J, QIAN J, ZHENG Q. ACS Appl. Mater. Interfaces, 2018, 10(16):13685-13692.

    37. [37]

      CINTI S, ARDUINI F, MOSCONE D, PALLESCHI G, GONZALEZ-MACIA L, KILLARD A J. Sens. Actuators, B, 2015, 221:187-190.

    38. [38]

      GUO S J, WEN D, DONG S J, WANG E K. Talanta, 2009, 77(4):1510-1517.

    39. [39]

      WEI H, WANG E. Anal. Chem., 2008, 80(6):2250-2254.

    40. [40]

      LU S Y, CHEN Y H, FANG X F, FENG X. J. Appl. Electrochem., 2017, 47(11):1261-1271.

    41. [41]

      MA J L, JIANG Y, SHEN L X, MA H T, SUN T R, LV F J, KIRAN A, ZHU N. Biosens. Bioelectron., 2019, 144:111637.

    42. [42]

      JIANG Y, XIA T, SHEN L X, MA J L, MA H T, SUN T R, LV F J, ZHU N. ACS Catal., 2021, 11(5):2949-2955.

    43. [43]

      FRAGA C G. Mol. Aspects Med., 2005, 26:235-244.

    44. [44]

      GAO W, NYEIN H Y Y, SHAPAR Z, FAHAD H M, CHEN K, EMAMINEJAD S, GAO Y J, TAI L C, OTA H, WU E, BULLOCK J, ZENG Y, LIEN D H, JVEY A. ACS Sens., 2016, 1(7):866-874.

    45. [45]

      RUSLAN N I, LIM D C K, AHMAD S A A, AZIZ S F N A, SUPIAN F L, YUSOF N A. J. Electroanal. Chem., 2017, 799:497-504.

    46. [46]

      JIANG Y, SHEN L X, MA J L, MA H T, SU Y, ZHU N. Anal. Chem., 2021, 93(4):2603-2609.

    47. [47]

      JIANG Y, CUI S J, XIA T, SUN T R, TAN H X, YU F, SU Y, WU S L, WANG D J, ZHU N. Anal. Chem., 2020, 92(21):14536-14541.

    48. [48]

      MEGARBANE B. Open Access Emerg. Med., 2010, 2:67-75.

    49. [49]

      NARAYANAMOORTHY B, DATTA K K R, ESWARAMOORTHY M, BALAJI S. ACS Catal., 2014, 4(10):3621-3629.

    50. [50]

      JIANG Y, MA J L, LV J, MA H T, XIA H B, WANG J, YANG C, XUE M Q, LI G Y, ZHU N. ACS Sens., 2019, 4(1):152-160.

    51. [51]

      MA H T, JIANG Y, MA J L, MA X L, XUE M Q, ZHU N. Anal. Chem., 2020, 92(8):5897-5903.

    52. [52]

      MANNA B, CHAKRABARTI I, GUHA P K. IEEE Sens. J., 2020, 21(3):2544-2551.

    53. [53]

      GAO W, EMAMINEJAD S, NYEIN H Y Y, CHALLA S, CHEN K, PECK A, FAHAD H M, OTA H, SHIRAKI H, KIRIYA D, LIEN D H, BROOKS G A, DAVIS R W, JAVERY A. Nature, 2016, 529(7587):509-514.

    54. [54]

      LIPANI L, DUPONT B G R, DOUNGMENE F, MARKEN F, TYRRELL R M, GUY R H, ILIE A. Nat. Nanotechnol., 2018, 13:504-511.

    55. [55]

      PU X, LI L X, LIU M M, JIANG C Y, DU C H, ZHAO Z F, HU W G, WANG Z L. Adv. Mater., 2016, 28(1):98-105.

    56. [56]

      XU J T, CHEN Y H, DAI L M. Nat. Commun., 2015, 6:8103.

    57. [57]

      WANG J Q, PEI Z X, LIU J, HU M M, FENG Y P, WANG P P, WANG H, NIE N Y, WANG Y Y, ZHI C Y, HUANG Y. Nano Energy, 2019, 65:104052.

    58. [58]

      SUN T R, SHEN L X, JIANG Y, MA J L, LV F J, MA H T, CHEN A W, ZHU N. ACS Appl. Mater. Interfaces, 2020, 12(19):21779-21787.

    59. [59]

      LV F J, MA H T, SHEN L X, JIANG Y, SUN T R, MA J L, GENG X D, KIRAN A, ZHU N. ACS Appl. Mater. Interfaces, 2021, 13(25):29780-29787.

    60. [60]

      MA H T, LV F J, SHEN L X, YANG K Z, JIANG Y, MA J L, GENG X D, SUN T R, PAN Y Z, XIE Z, XUE M Q, ZHU N. Energy Environ. Mater., 2022, 5(3):986-995.

    61. [61]

      JIN Z H, LIU Y L, CHEN J J, CAI S L, XU J Q, HUANG W H. Anal. Chem., 2017, 89(3):2032-2038.

    62. [62]

      LEE S, REUVENY A, REEDER J, LEE S, JIN H, LIU Q H, YOKOTA T, SEKITANI T, ISOYAMA T, ABE Y, SUO Z G, SOMEYA T. Nat. Nanotechnol., 2016, 11(5):472-478.

    63. [63]

      NAG A, SIMORANGKIR R B V B, VALENTIN E, BJORNINEN T, UKKONEN L, HASHMI R M, MUKHOPADHYAY C. IEEE Access, 2018, 4:2169-3536.

    64. [64]

      LI R A, CHEN G X, HE M H, TIAN J F, SU B. J. Mater. Chem. C, 2017, 5(33):8475-8481.

    65. [65]

      SAVEH-SHEMSHAKI N, BAGHERZADEH R, LATIFI M. Org. Electron., 2019, 70:131-139.

    66. [66]

      NAGHDI S, RHEE K Y, HUI D, PARK S J. Coatings, 2018, 8(8):278.

    67. [67]

      VITALE S, LARAMEE-MILETTE B, AMATO M E, HANAN G S, TUCCITTO N, LICCIARDELLO A. Nanoscale, 2019, 11(11):4788-4793.

    68. [68]

      SHAO Y L, ZHAO J, YUAN J Y, ZHAO Y L, LI L L. Angew. Chem., Int. Ed., 2021, 60(16):8923-8931.

    69. [69]

      PARK J, JEONG Y, KIM J, GU J M, WANG J, PARK I. Biosens. Bioelectron., 2020, 148:111822.

    70. [70]

      LUQUE G C, PICCHIO M L, MARTINS A P S, DOMINGUEZ-ALFARO RAMOS N, AGUA I D, MARCHIORI B, MECERREYES D, MINARI R J, TOME L C. Adv. Electron. Mater., 2021:2100178.

    71. [71]

      GUO H S, BAI M, WEN C Y, LIU M, TIAN S, XU S J, LIU X M, MA Y M, CHEN P G, LI Q S, ZHANG X Y, YANG J, ZHANG L. J. Colloid. Interface Sci., 2021, 600:561-571.

    72. [72]

      GAYLORD S T, DINH T L, GOLDMAN E R, ANDERSON G P, NGAN K C, WALT D R. Anal. Chem., 2015, 87(13):6570-6577.

    73. [73]

      KADIMISETTY K, MALLA S, SARDESAI N P, JOSHI A A, FARIA R C, LEE N H, RUSING J F. Anal. Chem., 2015, 87(8):4472-4478.

    74. [74]

      ZRIBI B, ROY E, PALLANDRE A, CHEBIL S, KOUBAA M, MEJRI N, GOMEZ H M, SOLA C, KORRI-YOUSSOUFI H, HAGHIRI-GOSNET A M. Biomicrofluidics, 2016, 10(1):014115.

    75. [75]

      EMMING S, SCHRODER K. Science, 2019, 365(6460):1375-1376.

    76. [76]

      LI F, MAO X H, LI F, LI M, SHEN J L, GE Z L, FAN C H, ZUO X L. J. Am. Chem. Soc., 2020, 142(22):9975-9981.

    77. [77]

      WANG J, YANG D M, GUO X G, SONG Q T, TAN L X, DONG L C. Anal. Chim. Acta, 2020, 1100:240-249.

    78. [78]

      ZHANG B L, JIN X, SUN L H, GUO X D. Microchem. J., 2020, 158:105217.

    79. [79]

      BANKAR S B, BULE M V, SINGHAL R S, ANANTHANARAYAN L. Biotechnol. Adv., 2009, 27(4):489-501.

    80. [80]

      LOYPRASERT S, HEDSTRON M, THAVARUNGKUL P, KANATHARANA P, MATTIASSON B. Biosens. Bioelectron., 2010, 25:1977-1983.

    81. [81]

      SEHIT E, DRZAZGOWSKA J, BUCHENAU D, YESILDAG C, LENSEN M, ALTINAS Z. Biosens. Bioelectron., 2020, 165:112432.

    82. [82]

      DIOUF A, BOUCHIKHI B, EL BARI N. Mater. Sci. Eng., C, 2019, 98:1196-1209.

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    10. [10]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    11. [11]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    12. [12]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    15. [15]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    16. [16]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    17. [17]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    20. [20]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

Metrics
  • PDF Downloads(77)
  • Abstract views(1171)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return