Citation: LIN Bing-Yong,  WANG Yue-Liang,  LIN Zhen-Yu,  GUO Long-Hua. Fabrication and Application of Noble Metal Nanocomposites-Based Surface-Enhanced Raman Scattering Active Substrate[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 653-665. doi: 10.19756/j.issn.0253-3820.210897 shu

Fabrication and Application of Noble Metal Nanocomposites-Based Surface-Enhanced Raman Scattering Active Substrate

  • Corresponding author: WANG Yue-Liang,  GUO Long-Hua, 
  • Received Date: 20 December 2021
    Revised Date: 12 February 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.22074054), the Key Research and Development Program of Zhejiang Province, China (No.2020C02022), the Nature Sciences Funding of Zhejiang Province, China (Nos.Q20B050002,LQ20B05004) and the Special Support Plan for High-level Talents in Zhejiang Province, China (No.2021R52044).

  • With the rapid development of nanotechnology and laser technology, surface-enhanced Raman scattering (SERS) technology has flourished with a great leap. As an analysis and detection technology for fast, nondestructive, and ultra-sensitive response to the fingerprint information of the target molecule, SERS technology has been widely applied in the field of food detection, environmental monitoring and clinical diagnosis. Fabrication of SERS substrate is the committed step of achieving the ultra-sensitive detection in various fields using SERS technology. At present, the SERS activity, homogeneity, and other properties of SERS substrates which are constructed by single noble metal nanomaterials through complex and time-consuming methods cannot fit the demand of the point-of-care detection in various fields. Therefore, more and more research scholars focus on the development of simple and rapid methods to fabrication of multi-functional composite SERS substrates and application of these composite SERS substrates into the field of food detection, environmental monitoring and clinical diagnosis. This article mainly reviews the preparation of precious metal composite SERS substrates and their applications in the past years, discusses and analyzes the function and application advantages of multi-functional composite SERS substrates. The forecast of multi-functional composite SERS substrate is also provided at the end of this article.
  • 加载中
    1. [1]

      FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Chem. Phys. Lett., 1974, 26(2):163-166.

    2. [2]

      JEANMAIRE D L, VAN DUYNE R P. J.Electroanal. Chem. Interfacial Electrochem., 1977, 84(1):1-20.

    3. [3]

      ALBRECHT M G, CREIGHTON J A. J. Am. Chem. Soc., 1977, 99(15):5215-5217.

    4. [4]

      LI J F, HUANG Y F, DING Y, YANG Z L, LI S B, ZHOU X S, FAN F R, ZHANG W, ZHOU Z Y, WU D Y, REN B, WANG Z L, TIAN Z Q. Nature, 2010, 464(7287):392-395.

    5. [5]

      SHARMA B, FRONTIERA R R, HENRY A I, RINGE E, VAN DUYNE R P. Mater. Today, 2012, 15(1-2):16-25.

    6. [6]

      LAING S, JAMIESON L E, FAULDS K, GRAHAM D. Nat. Rev. Chem., 2017, 1(8):0060.

    7. [7]

      DING S Y, YI J, LI J F, REN B, WU D Y, PANNEERSELVAM R, TIAN Z Q. Nat. Rev. Mater., 2016, 1(6):16021.

    8. [8]

      WILLETS K A, VAN DUYNE R P. Annu. Rev. Phys. Chem., 2007, 58:267-297.

    9. [9]

      ZONG C, XU M X, XU L J, WEI T, MA X, ZHENG X S, HU R, REN B. Chem. Rev., 2018, 118(10):4946-4980.

    10. [10]

      GERSTEN J, NITZAN A. J. Chem. Phys., 1980, 73(7):3023-3037.

    11. [11]

      JENSEN L, AIKE NS C M, SCHATZ G C. Chem. Soc. Rev., 2008, 37(5):1061-1073.

    12. [12]

      ZHANG L L, HAO R, ZHANG D J, YOU H J, DAI Y Z, LIU W H, FANG J X. Anal. Chem., 2020, 92(14):9838-9846.

    13. [13]

      SÁNCHEZ-IGLESIAS A, WINCKELMANS N, ALTANTZIS T, BALS S, GRZELCZAK M, LIZ-MARZÁN L M. J. Am. Chem. Soc., 2017, 139(1):107-110.

    14. [14]

      FLAURAUD V, MASTRANGELI M, BERNASCONI G D, BUTET J, ALEXANDER D T L, SHAHRABI E, MARTIN O J F, BRUGGER J. Nat. Nanotechnol., 2017, 12(1):73-80.

    15. [15]

      LI J J, YAN H, TAN X C, LU Z C, HAN H Y. Anal. Chem., 2019, 91(6):3885-3892.

    16. [16]

      WU T, LIN Y W. Appl. Surf. Sci., 2018, 435:1143-1149.

    17. [17]

      ZHANG X L, DAI Z G, ZHANG X G, DONG S L, WU W, YANG S K, XIAO X H, JIANG C Z. Sci. China:Phys., Mech. Astron., 2016, 59(12):1-11.

    18. [18]

      ZHANG Y J, SUN H H, GAO R X, ZHANG F, ZHU A N, CHEN L, WANG Y X. Sens. Actuators, B, 2018, 272:34-42.

    19. [19]

      YANG S K, CAI W P, KONG L C, LEI Y. Adv. Funct. Mater., 2010, 20(15):2527-2533.

    20. [20]

      YANG S K, LAPSLEY M I, CAO B Q, ZHAO C L, ZHAO Y H, HAO Q Z, KIRALY B, SCOTT J, LI W Z, WANG L, LEI Y, HUANG T J. Adv. Funct. Mater., 2013, 23(6):720-730.

    21. [21]

      LI LM, CHIN W S. ACS Appl. Mater. Interfaces, 2020, 12(33):37538-37548.

    22. [22]

      HASNA K, ANTONY A, PUIGDOLLERS J, KUMAR K R, JAYARAJ M K. Nano Res., 2016, 9(10):3075-3083.

    23. [23]

      CHEN R P, DU X, CUI Y J, ZHANG X Y, GE Q Y, DONG J, ZHAO X W. Small, 2020, 16(32):2002801.

    24. [24]

      SUI C F, WANG K G, WANG S, REN J Y, BAI X H, BAI J T. Nanoscale, 2016, 8(11):5920-5927.

    25. [25]

      SHAN D Z, HUANG L Q, LI X, ZHANG W W, WANG J, CHENG L, FENG X H, LIU Y, ZHU J P, ZHANG Y. J. Phys. Chem. C, 2014, 118(41):23930-23936.

    26. [26]

      JI N, RUAN W D, WANG C X, LU Z C, ZHAO B. Langmuir, 2009, 25(19):11869-11873.

    27. [27]

      CELIKM ALTUNTAS S, BUYUKSERIN F. Sens. Actuators, B, 2018, 255:2871-2877.

    28. [28]

      HONG D Y, KIM S K, KWON Y U. J. Phys. Chem. C, 2015, 119(39):22611-22617.

    29. [29]

      SU S, ZHANG C, YUWEN L H, CHAO J, ZUO X L, LIU X F, SONG C Y, FAN C H, WANG L H. ACS Appl. Mater. Interfaces, 2014, 6(21):18735-18741.

    30. [30]

      YU L L, LU L, ZENG L H, YAN X H, REN X F, WU J Z. J. Phys. Chem. C, 2021, 125(3):1940-1946.

    31. [31]

      QIU H W, WANG M Q, LI L, LI J J, YANG Z, CAO M H. Sens. Actuators, B, 2018, 255:1407-1414.

    32. [32]

      LI J F, TIAN X D, LI S B, ANEMA J R, YANG Z L, DING Y, WU Y F, ZENG Y M, CHEN Q Z, REN B, WANG Z L, TIAN Z Q. Nat. Protoc., 2013, 8(1):52-65.

    33. [33]

      WEI C, XU M M, FANG C W, JI N, YUAN Y X, YAO J L. Spectrochim. Acta, Part A, 2017, 175:262-268.

    34. [34]

      SAMAL A K, POLAVARAPU L, RODAL-CEDEIRA S, LIZ-MARZÀN L M, PÉREZ-JUSTE J, PASTORIZA-SANTOS I. Langmuir, 2013, 29(48):15076-15082.

    35. [35]

      CHANG J, ZHANG A M, HUANG Z C, CHEN Y S, ZHANG Q, CUI D X. Talanta, 2019, 198:45-54.

    36. [36]

      SHEN W, LIN X, JIANG C Y, LI C Y, LIN H X, HUANG J T, WANG S, LIU G K, YAN X M, ZHONG Q L, REN B. Angew. Chem., Int. Ed., 2015, 54(25):7308-7312.

    37. [37]

      LIU X J, CAO L Y, SONG W, AI K L, LU L H. ACS Appl. Mater. Interfaces, 2011, 3(8):2944-2952.

    38. [38]

      CAI Q R, MATETI S, WATANABE K, TANIGUCHI T, HUANG S M, CHEN Y, LI L H. ACS Appl. Mater. Interfaces, 2016, 8(24):15630-15636.

    39. [39]

      CHEN J M, GUO L H, CHEN L F, QIU B, HONG G L, LIN Z Y. ACS sensors, 2020, 5(12):3964-3970.

    40. [40]

      GUARROTXENA N, BAZAN G C. Chem. Commun., 2011, 47(31):8784-8786.

    41. [41]

      HUANG D D, CHEN J M, DING L, GUO L H, KANNAN P, LUO F, QIU B, LIN Z Y. Anal. Chim. Acta, 2020, 1110:56-63.

    42. [42]

      PANG Y F, WANG C W, WANG J, SUN Z W, XIAO R, WANG S Q. Biosens. Bioelectron., 2016, 79:574-580.

    43. [43]

      SUN F, ELLA-MENYE J R, GALVAN D D, BAI T, HUNG H C, CHOU Y N, ZHANG P, JIANG S Y, YU Q M. ACS Nano, 2015, 9(3):2668-2676.

    44. [44]

      JIA Y, SHMAKOV S N, PINKHASSIK E. ACS Appl. Mater. Interfaces, 2016, 8(30):19755-19763.

    45. [45]

      KIM Y H, KIM D J, LEE S, KIM D H, PARK S G, KIM S H. Small, 2019, 15(52):1905076.

    46. [46]

      KIM D J, PARK S G, KIM D H, KIM S H. Small, 2018, 14(40):1802520.

    47. [47]

      XIE Y F, CHEN T, GUO Y H, CHENG Y L, QIAN H, YAO W R. Food Chem., 2019, 270:173-180.

    48. [48]

      AI Y J, LIANG P, WU Y X, DONG Q M, LI J B, BAI Y, XU B J, YU Z, NI D J. Food Chem., 2018, 241:427-433.

    49. [49]

      CHEN J M, HUANG Y J, KANNAN P, ZHANG L, LIN Z Y, ZHANG J W, CHEN T, GUO L H. Anal. Chem., 2016, 88(4):2149-2155.

    50. [50]

      HE H R, SUN D W, PU H B, HUANG L J. Food Chem., 2020, 324:126832.

    51. [51]

      BAO L L, MAHURIN S M, HAIRE R G, DAI S. Anal. Chem., 2003, 75(23):6614-6620.

    52. [52]

      HE J, XU F J, CHEN Z, HOU X D, LIU Q, LONG Z. Chem. Commun., 2017, 53(80):11044-11047.

    53. [53]

      ZHANG C H, ZHU J, LI J J, ZHAO J W. ACS Appl. Mater. Interfaces, 2017, 9(20):17387-17398.

    54. [54]

      LI S J, ZHAO B F, AGUIRRE A, WANG Y, LI R X, YANG S S, ARAVIND I, CAI Z, CHEN R, JENSEN L, CRONIN S B. Anal. Chem., 2021, 93(16):6421-6427.

    55. [55]

      KIM S H, KIM D H, PARK S G. Analyst, 2018, 143(13):3006-3010.

    56. [56]

      GUERRINI L, KRPETIĆŽ, VAN LIEROP D, ALVAREZ-PUEBLA R A, GRAHAM D. Angew. Chem., Int. Ed., 2015, 127(4):1160-1164.

    57. [57]

      WANG C W, WANG C G, WANG X L, WANG K L, ZHU Y H, RONG Z, WANG W Y, XIAO R, WANG S Q. ACS Appl. Mater. Interfaces, 2019, 11(21):19495-19505.

    58. [58]

      ZHANG W S, WANG Y N, WANG Y, XU Z R. Sens. Actuators, B, 2019, 283:532-537.

    59. [59]

      YUE S, SUN X T, WANG Y, ZHANG W S, XU Z R. Sens. Actuators, B, 2018, 273:1539-1547.

    60. [60]

      PANIKAR S S, RAMÍREZ-GARCÍA G, SIDHIK S, LOPEZ-LUKE T, RODRIGUEZ-GONZALEZ C, CIAPARA I H, CASTILLO P S, CAMACHO-VILLEGAS T, DE LA ROSA E. Anal. Chem., 2018, 91(3):2100-2111.

    61. [61]

      HODGES M D, KELLY J G, BENTLEY A J, FOGARTY S, PATEL I I, MARTIN F L, FULLWOOD N J. ACS Nano, 2011, 5(12):9535-9541.

    62. [62]

      TAHIR M A, DINA N E, CHENG H Y, VALEV V K, ZHANG L W. Nanoscale, 2021, 13(27):11593-11634.

  • 加载中
    1. [1]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    2. [2]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    3. [3]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    9. [9]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    10. [10]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    11. [11]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    12. [12]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    13. [13]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    14. [14]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    15. [15]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    18. [18]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-0. doi: 10.3866/PKU.WHXB202310024

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(53)
  • Abstract views(1658)
  • HTML views(283)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return