Citation: ZHANG Lian-Ming,  LI Shu-Huai,  LUO Kui,  DAI Yu-Ning,  LI Jian-Ping. Construction and Application of L-Penicillamine Molecular Imprinted Electrochemical Sensor Based on Covalent Organic Framework-JUZ2 Fixed Conformation[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 995-1004. doi: 10.19756/j.issn.0253-3820.210894 shu

Construction and Application of L-Penicillamine Molecular Imprinted Electrochemical Sensor Based on Covalent Organic Framework-JUZ2 Fixed Conformation

  • Corresponding author: ZHANG Lian-Ming,  LI Shu-Huai,  LI Jian-Ping, 
  • Received Date: 6 December 2021
    Revised Date: 15 February 2022

    Fund Project: Supported by the Open Fund of the Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables (No.KFKT2020001), the National Natural Science Foundation of China (No.21765006), the Science and Technology Project of Guangxi (No.2018GXNSFAA138145, GuikeAD19110059) and the Guilin University of Technology (No.GUTQDJJ2016024).

  • The improvement of sensor selection recognition ability is crucial to the performance of molecular imprinted sensors. Herein, a molecularly imprinted polymer-based sensor was developed for L-penicillamine (L-Pen) detection based on covalent organic framework compounds COF-JUZ2. The molecular imprint chiral recognition sensor with efficient separation and recognition ability was constructed via selectively fixing the conformation of chiral molecules by COF-JUZ2 to increase the recognition sites. The sensor showed the optimal detection performance for L-Pen when using the mixed solution of ultrapure water, acetic acid and methanol (1:1:8, V/V) as eluant and the COF-JUZ2-CS deposition time, electropolymerization cycle, eluent time and rebind time were 300 s, 15, 5 and 30 min, respectively. The sensor showed an excellent linear relationship with L-Pen concentration in the range of 1.0×10-15 to 1.0×10-9 mol/L, with a detection limit of 7.91×10-16 mol/L. Due to introduction of COF-JUZ2, the separation and recognition performance of the sensor for D-Pen and L-Pen was increased by 13.4 folds. The sensor was applied to determination of L-Pen in real sample, with recoveries of 92.0%-102.0%.
  • 加载中
    1. [1]

      YANG G, LIU Z, LAN T, DOU L, ZHANG K. Environ. Sci.:Water Res. Technol., 2021, 7:1220-1229.

    2. [2]

      ZHAO Y, ZHU X, JIANG W, LIU H, SUN B. Molecules, 2021, 26(4):1145-1176.

    3. [3]

      CHEN Z, ZOU Y, WANG J, LI M, WEN Y. Sci. Total Environ., 2016, 548:139-147.

    4. [4]

      GUO Y T, XIAO Y H, ZHANG J G, BIAN S D, ZHOU J Z, WU D Y, TIAN Z Q. Phys. Chem. Chem. Phys., 2021, 23(38):22119-22132.

    5. [5]

    6. [6]

      BUSKER E, GUNTHER K, MARTENS J. J. Chromatogr. A, 1985, 350(1):179-185.

    7. [7]

    8. [8]

      BHUSHAN R, BRUCKNER H, KUMAR V. Biomed. Chromatogr., 2010, 21(10):1064-1068.

    9. [9]

      HASSAN Y, ABOUL E. Anal. Lett., 1988, 21(12):2155-2163.

    10. [10]

      WAND Y, HAN Q, ZHANG Q, HUANG Y, GUO L, FU Y. Anal. Methods, 2013, 5(20):5579-5583.

    11. [11]

      ZHAO L, KUANG X, KUANG R, TONG L, WEI Q. ACS Appl. Mater. Interfaces, 2020, 12(1):1533-1538.

    12. [12]

      ZHANG Y, WANG H Y, HE X W, LI W Y, ZHANG Y K. J. Hazard. Mater., 2021, 412:125249.

    13. [13]

      DOLAI J, ALI H, JANA N R. ACS Appl. Polymer Mater., 2020, 2(2):691-698.

    14. [14]

      LIU Y, LIU Y, LIU Z, ZHAO X, CAI Z. J. Hazard. Mater., 2020, 392:122251.

    15. [15]

      ZHANG L, LUO K, LI D, ZHANG Y, LI J. Anal. Chim. Acta, 2020, 1136:82-90.

    16. [16]

      COOPER A I. Crystengcomm, 2013, 15(8):1483.

    17. [17]

      YING Y, YANG Z, SHI D, PEH S B, ZHAO D. J. Membr. Sci., 2021, 632:119384.

    18. [18]

      SHI J L, HEN R C, HAO H, WANG C, LANG X. Angew. Chem., Int. Ed., 2020, 59(23):9088-9093.

    19. [19]

      LU Z, LU X, XIA L, ZHONG Y, HU Y. Talanta, 2021, 232:122428.

    20. [20]

      ZHAO C, ZHANG L, WANG Q, ZHANG L, ZHANG Y. ACS Appl. Mater. Interfaces, 2021, 13(17):20397-20404.

    21. [21]

      CUI J, KAN L, LI Z, YANG L, ZHANG Z. Talanta, 2021, 228:122060.

    22. [22]

      ZHUO S Q, ZHANG X Y, LUO H, WANG X H, JI Y B. Macromol. Rapid Commun., 2020, 41(20):2004004.

    23. [23]

    24. [24]

      SONG L J, GUO Z P, CHEN Y. Electrophoresis, 2012, 33(13):2056-2063.

  • 加载中
    1. [1]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    2. [2]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    3. [3]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    4. [4]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    5. [5]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    10. [10]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    13. [13]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    14. [14]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    15. [15]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    16. [16]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    17. [17]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    18. [18]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    19. [19]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(13)
  • Abstract views(781)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return