Citation: LI Xin,  LIU Cai-xia,  ZHOU Jing-ran,  MA Yan,  RUAN Sheng-ping. Study on Ethanol Gas Sensor Based on Hierarchical Structured NiO/Zn2SnO4 Nanoflowers[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 564-573. doi: 10.19756/j.issn.0253-3820.210880 shu

Study on Ethanol Gas Sensor Based on Hierarchical Structured NiO/Zn2SnO4 Nanoflowers

  • Corresponding author: MA Yan,  RUAN Sheng-ping, 
  • Received Date: 26 November 2021
    Revised Date: 24 February 2022

    Fund Project: the Project of Science and Technology Plan of Jilin Province,China(No. 20200201267JC)Supported by the National Natural Science Foundation of China(Nos. 12073009, 61874048, 61974055, U21B2061)

  • NiO/Zn2SnO4 hierarchical nanoflowers were successfully synthesized by hydrothermal method combined with subsequent solution impregnation process. Gas sensor with a side-heated gas sensor structure was fabricated by utilizing the obtained NiO/Zn2SnO4 as sensing material. Several characterization techniques such as X-ray diffraction(XRD) patterns, scanning electron microscopy(SEM), transmission electron microscope(TEM) and X-ray photoelectron spectroscopy(XPS) were employed to investigate the composition, morphology and microstructure of the samples. The results showed that the Zn2SnO4 synthesized via hydrothermal method took on a hierarchical nanoflower structure composed of nano-lamellae, and NiO was successfully decorated on the surface of the Zn2SnO4 nanoflowers as nanoparticles through solution impregnation. The gas sensing performances of pure Zn2SnO4 and NiO/Zn2SnO4 composites were investigated and the testing results revealed that the NiO/Zn2SnO4 composites exhibited excellent sensing performances to ethanol. The response presented a linear relationship with ethanol concentration in the range of 1-100 μL/L(R2=0.9990), the response to 100 μL/L ethanol reached 46.5 at 230℃, and the response and recovery time was 3 s and 16 s, respectively. Moreover, the NiO/Zn2SnO4-based sensor possessed great selectivity and stability. Compared with pure Zn2SnO4 nanoflowers, the sensing properties of NiO/Zn2SnO4 composites were improved dramatically, and the enhancement may ascribe to the p-n type heterojunctions formed between NiO and Zn2SnO4 as well as the catalysis synergetic effect of NiO. The research on the NiO/Zn2SnO4-based sensor provided a reference for highly sensitive detection of ethanol.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      CHEN H, SUN L, LI G D, ZOU X X. Chem. Mater., 2018, 30(6):2018-2027.

    4. [4]

      XU T T, XU Y M, ZHANG X F, DENG Z P, HUO L H, GAO S. Front. Chem., 2018, 6:165.

    5. [5]

      XU T T, ZHANG X F, DONG X, DENG Z P, HUO L H, GAO S. J. Hazard. Mater., 2019, 361:49-55.

    6. [6]

      XU T T, ZHANG X F, DENG Z P, HUO L H, GAO S. Polyhedron, 2018, 151:510-514.

    7. [7]

      CHEN Z, CAO M, HU C. J. Phys. Chem. C, 2011, 115(13):5522-5529.

    8. [8]

      HANH N H, DUY L V, HUNG C M, DUY N V, HEO Y W, HIEU N Y, HOA N D. Sens. Actuators, A, 2020, 302:111834.

    9. [9]

      TIE Y, MA S Y, PEI S T, ZHU K M, ZHANG Q X, ZHANG R, WANG B J, ZHANG J L, XU X H, HAN T, LIU W W,CAO P F, MA Y. Mater. Lett., 2020, 259:126896.

    10. [10]

      DEY A. Mater. Sci. Eng. B, 2018, 229:206-217.

    11. [11]

      ZHU L, LI Y, ZENG W. Appl. Surf. Sci., 2018, 427:281-287.

    12. [12]

      YANG M, LU J Y, WANG X, ZHANG H, CHEN F, SUN J B, YANG J Q, SUN Y F, LU G Y. Sens. Actuators, B,2020, 313:127965.

    13. [13]

      GAO H, WEI D, LIN P, LIU C, SUN P, SHIMANOE K, YAMAZOE N, LU G Y. Sens. Actuators, B, 2017, 253:1152-1162.

    14. [14]

      XU Y Y, TIAN X, FAN Y R, SUN Y Q. Sens. Actuators, B, 2020, 309:127719.

    15. [15]

      MANGALAM K S, JOSE A S, PRAJWAL K, CHOWDHURY P, BARSHILIA H C. Sens. Actuators, B, 2020, 310:127830.

    16. [16]

      DIN S U, UI HAQ M, SAJID M, KHATOON R, CHEN X H, LI L, ZHANG M J, ZHU L P. Nanotechnology, 2020,31(39):395502.

    17. [17]

      BAI S L, HAN J Y, HAN N, ZHANG K W, SUN J H, SUN L X, LUO R X, LI D Q, CHEN A F. Front. Chem.,2020, 7(7):1532-1539.

    18. [18]

      ZHANG S S, SUN G, LI Y W, ZHANG B, LIN L, WANG Y, CAO J L, ZHANG Z Y. Sens. Actuators, B, 2018,255(3):2936-2943.

    19. [19]

      LIU F J, CHEN X Y, WANG X Z, HAN Y, SONG X J, TIAN J, HE X M, CUI H Z. Sens. Actuators, B, 2019, 291:155-163.

    20. [20]

      YANG J D, WANG S R, ZHANG L P, DONG R, ZHU Z Y, GAO X L. Sens. Actuators, B, 2017, 239:857-864.

    21. [21]

      CHEN H, YAN J Q, WU H, ZHANG Y X, LIU S Z. Sens. Actuators, B, 2016, 324:499-508.

    22. [22]

    23. [23]

      AND M, MAO N, DENG G Z, ZOU Y L, LI Y, WEI T, LIAN X X. Ceram. Int., 2016, 42(2):3535-3541.

    24. [24]

      HANH N H, NGOC T M, DUY L V, HUNG C M, DUY N V, HOA N D. Sens. Actuators, B, 2021, 343:130147.

    25. [25]

      YANG X L, LI H, LI T, LI Z Z, WU W F, ZHOU C G, SUN P, LIU F M, YAN X, GAO Y, LIANG X S, LU G Y.Sens. Actuators, B, 2019, 282:339-346.

    26. [26]

      CHEN C, LI G Z, LI J H, LIU Y L. Ceram. Int., 2015, 41(1):1857-1862.

    27. [27]

      WANG Y, ZHANG H, SUN X H. Appl. Surf. Sci., 2016, 389:514-520.

    28. [28]

      BARSAN N, WEIMAR U. J. Electroceram., 2001, 7(3):143-167.

    29. [29]

      PARK C O, AKBAR S A. J. Mater. Sci., 2003, 38(23):4611-4637.

    30. [30]

      SHAILJ A, SINGH K J, SINGH R C. J. Mater. Sci.:Mater. Electron., 2021, 32(8):11274-11290.

    31. [31]

      CAO S X, HAN T, PENG L L. J. Mater. Sci.:Mater. Electron., 2020, 31(20):17291-17296.

  • 加载中
    1. [1]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    2. [2]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 100022-0. doi: 10.3866/PKU.WHXB202311015

    3. [3]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    4. [4]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    5. [5]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    6. [6]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    7. [7]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    8. [8]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    9. [9]

      Qi HUANGYouyi WANGZhujian MAOZhonghui YEWeihan CHENJui-yeh RAUJian HUANG . Enhanced photocatalytic tetracycline degradation via 2D CdS/Ti3AlC2 MAX heterostructure. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2385-2398. doi: 10.11862/CJIC.20250159

    10. [10]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    11. [11]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    12. [12]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    13. [13]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    14. [14]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    15. [15]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    16. [16]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    18. [18]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    19. [19]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(10)
  • Abstract views(759)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return