Citation: CUI Ya-Nan,  SUN Qi,  REN Xiao-Yan,  LU Le-Hui. Performance Analysis of Binders for Silicon Anodes by In-situ Electrochemical Quartz Crystal Microbalance Technique[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(3): 384-391. doi: 10.19756/j.issn.0253-3820.210874 shu

Performance Analysis of Binders for Silicon Anodes by In-situ Electrochemical Quartz Crystal Microbalance Technique

  • Corresponding author: REN Xiao-Yan,  LU Le-Hui, 
  • Received Date: 2 December 2021
    Revised Date: 13 January 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21874127, 22004115, 21721003).

  • Binders play an important role in the commercialization of silicon anodes. Herein, two kinds of commonly used commercial binders, polyvinylidene difluoride (PVDF) and sodium alginate (ALG), were characterized with cyclic charge-discharge test, cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The results showed that silicon electrode using binder ALG endowed enhanced cycling stability (200 cycles at 0.1 C) and low-capacity fading rate (0.2% per cycle). In comparison with silicon electrode using binder PVDF, the surface of silicon electrode using ALG was much smoother and exhibited lower impedance after cycling. Furthermore, in-situ electrochemical quartz crystal microbalance (In-situ EQCM) was then introduced to quantitatively record the quality and current changes of electrode in real time, and the generation process of solid electrolyte interface (SEI) film was further analyzed. The analysis results showed that the hydrogen bond interaction between the carboxyl group of binder ALG and the hydroxyl group on silicon electrode could enhance the adhesion of nano-silicon particles to the current collector, promote the formation of a thin and dense SEI film on the electrode surface, reduce the decomposition of electrolyte, and significantly improve the electrochemical performance. In this study, a combination of in-situ and ex-situ characterization was used to make a preliminary discussion on the mechanism of different binders during the charge and discharge process of silicon electrodes.
  • 加载中
    1. [1]

      OBROVAC M N, CHEVRIER V L. Chem. Rev., 2014, 114(23):11444-11502.

    2. [2]

      TRIPATHI A M, SU W N, HWANG B J. Chem. Soc. Rev., 2018, 47(3):736-851.

    3. [3]

    4. [4]

    5. [5]

      JI Y C, YIN Z W, YANG Z Z, DENG Y P, CHEN H B, LIN C, YANG L Y, YANG K, ZHANG M J, XIAO Q F, LI J T, CHEN Z W, SUN S G, PAN F. Chem. Soc. Rev., 2021, 50(19):10743-10763.

    6. [6]

      ZHU G J, CHAO D L, XU W L, WU M H, ZHANG H J. ACS Nano, 2021, 15(10):15567-15593.

    7. [7]

      WU F X, MAIER J, YU Y. Chem. Soc. Rev., 2020, 49(5):1569-1614.

    8. [8]

    9. [9]

      CHAN C K, PATEL R N, O'CONNELL M J. ACS Nano, 2010, 4(3):1443-1450.

    10. [10]

      LIU N, LU Z, ZHAO J, MCDOWELL M T, LEE H W, ZHAO W, CUI Y. Nat. Nanotechnol, 2014, 9(3):187-192.

    11. [11]

      CHAN C K, PENG H, LIU G, MCILWRATH K, ZHANGX F, HUGGINS R A. Nat. Nanotechnol., 2007, 3(1):31-35.

    12. [12]

      MAGASINSKI A, ZDYRKO B, KOVALENKO I, HERTZBERG B, BURTOVYY R, HUEBNER C F, FULLER T F, LUZINOV I, YUSHIN G. ACS Appl. Mater. Interfaces, 2010, 2(11):3004-3010.

    13. [13]

      CHOI S, KWON T W, COSKUN A, CHOI J W. Science, 2017, 357(6348):279-283.

    14. [14]

      RYOU M H, KIM J, LEE I, KIM S, JEONG Y K, HONG S, RYU J H, KIM T S, PARK J K, LEE H, CHOI J W. Adv. Mater., 2013, 25(11):1571-1576.

    15. [15]

      RUFFO R, HONG S S, CHAN C K. J. Phys. Chem. C, 2009, 113(26):11390-11398.

    16. [16]

      CHANG J B, HUANG X K, ZHOU G H, CUI S M, HALLAC P B, JIANG J W, HURLEY P T, CHEN J H. Adv. Mater., 2014, 26(5):758-764.

    17. [17]

      CHEN H, LING M, HENCZ L, LING H Y, LI G R, LIN Z, LIU G, ZHANG S Q. Chem. Rev., 2018, 118(18):8936-8982.

    18. [18]

      SONG J X, ZHOU M J, YI R, XU T, GORDIN M L, TANG D H, YU Z X, REGULA M, WANG D H. Adv. Funct. Mater., 2014, 24(37):5904-5910.

    19. [19]

    20. [20]

      PARK C M, KIM J H, KIM H, SOHN H J. Chem. Soc. Rev., 2010, 39(8):3115-3141.

    21. [21]

      JIAO X X, YIN J Q, XU X Y, WANG J L, LIU Y Y, XIONG S Z, ZHANG Q L, SONG J X. Adv. Funct. Mater., 2021, 31(3):2005699.

    22. [22]

      LIU D, ZHAO Y, TAN R, TIAN L L, LIU Y, PAN F. Nano Energy, 2017, 36:206-212.

    23. [23]

      WANG C, WU H, CHEN Z, MCDOWELL M T, CUI Y, BAO Z A. Nat. Chem., 2013, 5(12):1042-1048.

    24. [24]

      LIU T C, LIN L P, BI X X, TIAN L L, XU K, PAN F. Nat. Nanotechnol., 2019, 14:50-56.

    25. [25]

      WANG J, HU Y, ZHAO H, FU H X, PENG K Q. Adv. Mater. Interfaces, 2018, 5(23):1801132.

    26. [26]

      KOVALENKO I, ZDYRKO B, MAGASINSKI A, HERTZBERG B, MILICEV Z, BURTOVYY R, LUZINOV I, YUSHIN G. Science, 2011, 334(6052):75-79.

    27. [27]

      MA X, GAO Y, CHEN M, WU L M. ChemElectroChem, 2017, 4(6):1463-1469.

    28. [28]

      LIU W, LIU P, MITLIN D. Adv. Energy Mater., 2020, 10(43):2002297.

    29. [29]

      ZHAO Q, STALIN S, ARCHER L A. Joule, 2021, 5(5):1119-1142.

    30. [30]

      WU H, CHAN G, CHOI J W, YANG Y, HU L. Nat. Nanotechnol., 2012, 7(5):310-315.

    31. [31]

      LUO W, CHEN X Q, XIA Y, LI W, YANG J P. Adv. Energy Mater., 2017, 7(24):1701083.

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

    3. [3]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    4. [4]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    5. [5]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    6. [6]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    7. [7]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 100022-0. doi: 10.3866/PKU.WHXB202311015

    10. [10]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    13. [13]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    14. [14]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    17. [17]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    18. [18]

      Tinghui ANDong XIANGJiaqi LIJiawei WANGShuming YUNan WANGKedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(19)
  • Abstract views(1405)
  • HTML views(337)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return