Citation: CHENG Xiao-Wei,  LI Shan-Shan,  WU Lie,  JIANG Xiu-E. Study on Counter Ion Effect at Electrode/Electrolyte Interface by Surface-enhanced Infrared Absorption Spectroelectrochemistry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(3): 365-374. doi: 10.19756/j.issn.0253-3820.210873 shu

Study on Counter Ion Effect at Electrode/Electrolyte Interface by Surface-enhanced Infrared Absorption Spectroelectrochemistry

  • Corresponding author: WU Lie,  JIANG Xiu-E, 
  • Received Date: 1 December 2021
    Revised Date: 23 December 2021

    Fund Project: Supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (No.2020233), the National Natural Science Foundation of China (Nos.22025406, 22074138) and the Science and Technology Innovation Foundation of Jilin Province, China (No.20200703021ZP).

  • The electrode-electrolyte interface is very important in electrochemistry, but the quantitative analysis of the adsorption of counter ions on the electrode surface and its influence on the interfacial electric field is extremely lacking, which limits the in-depth understanding of the electrode-electrolyte interface. In this study, four commonly used electrolytes in neutral electrochemical reaction systems were selected, and surface-enhanced infrared absorption spectroelectrochemistry combined with the vibrational Stark effect was used to analyze the special counter-ion effect at the electrode-electrolyte interface. The difference in distributions of anions as counter ions in the electric double layer due to the difference in the strength of the interaction with the electrode surface and the resultant different shielding of the local electric field at the interface were revealed through vibrational Stark probe with different molecular length. Anions that specifically interacted with the electrode could be adsorbed in the Stern layer in large quantities, significantly reducing the local effective electric field. This had far-reaching significance for deep understanding of the electrochemical double layer structure and the structure-activity relationship of the electrocatalytic reaction. At the same time, an effective quantitative analysis method was proposed for analysis of electrode-electrolyte interface.
  • 加载中
    1. [1]

      DEVANATHAN M A, TILAK B V K. Chem. Rev., 1965, 65(6):635-684.

    2. [2]

      MAGNUSSEN O M, GROß A. J. Am. Chem. Soc., 2019, 141(12):4777-4790.

    3. [3]

      STEINMANN S N, WEI Z Y, SAUTET P. Proc. Natl. Acad. Sci. U.S.A., 2019, 116(16):7611-7613.

    4. [4]

      ZAERA F. Chem. Rev., 2012, 112(5):2920-2986.

    5. [5]

      CHOI N S, CHEN Z H, FREUNBERGER S A, JI X L, SUN Y K, AMINE K, YUSHIN G, NAZAR L F, CHO J, BRUCE P G. Angew. Chem., Int. Ed., 2012, 51(40):9994-10024.

    6. [6]

      TRIPKOVIC D V, STRMCNIK D, VAN DER VLIET D, STAMENKOVIC V, MARKOVIC N M. Faraday Discuss., 2008, 140:25-40.

    7. [7]

      WANG H N, PILON L. J. Phys. Chem. C, 2011, 115(33):16711-16719.

    8. [8]

      POPE J M, ZHENG T, KIMBRELL S, BUTTRY D A. J. Am. Chem. Soc., 1992, 114(25):10085-10086.

    9. [9]

      EGGERS P K, DARWISH N, PADDON-ROW M N, GOODING J J. J. Am. Chem. Soc., 2012, 134(17):7539-7544.

    10. [10]

      SMITH C P, WHITE H S. Anal. Chem., 1992, 64(20):2398-2405.

    11. [11]

      WEN B Y, LIN J S, ZHANG Y J, RADJENOVIC P M, ZHANG X G, TIAN Z Q, LI J F. J. Am. Chem. Soc., 2020, 142(27):11698-11702.

    12. [12]

      FAVARO M, JEONG B, ROSS P N, YANO J, HUSSAIN Z, LIU Z, CRUMLIN E J. Nat. Commun., 2016, 7:12695.

    13. [13]

      BROWN M A, GOEL A, ABBAS Z. Angew. Chem., Int. Ed., 2016, 55(11):3790-3794.

    14. [14]

      WANG X P, LIU K, WU J Z. J. Chem. Phys., 2021, 154(12):124701.

    15. [15]

    16. [16]

      ZHANG P, WEI Y, CAI J, CHEN Y X, TIAN Z Q. Chin. J. Catal., 2016, 37(7):1156-1165.

    17. [17]

      SCHKOLNIK G, SALEWSKI J, MILLO D, ZEBGER I, FRANZEN S, HILDEBRANDT P. Int. J. Mol. Sci., 2012, 13(6):7466-7482.

    18. [18]

      ZHANG N, WANG X R, YUAN Y X, WANG H F, XU M M, REN Z G, YAO J L, GU R A. J. Electroanal. Chem., 2015, 751:137-143.

    19. [19]

      DREXLER C I, CRACCHIOLO O M, MYERS R L, OKUR H I, SERRANO A L, CORCELLI S A, CREMER P. J. Phys. Chem. B, 2021, 125(30):8484-8493.

    20. [20]

      SARKAR S, MAITRA A, BANERJEE S, THOI V S, DAWLATY J M. J. Phys. Chem. B, 2020, 124(7):1311-1321.

    21. [21]

      WU L, ZENG L, JIANG X E. J. Am. Chem. Soc., 2015, 137(32):10052-10055.

    22. [22]

      LI X, GEWIRTH A A. J. Am. Chem. Soc., 2003, 125(38):11674-11683.

    23. [23]

      LEVINSON N M, BOLTE E E, MILLER C S, CORCELLI S A, BOXER S G. J. Am. Chem. Soc., 2011,133(34):13236-13239.

    24. [24]

      MAGNUSSEN O M. Chem. Rev., 2002, 102(3):679-726.

    25. [25]

      YAGUCHI M, UCHIDA T, MOTOBAYASHI K, OSAWA M. J. Phys. Chem. Lett., 2016, 7(16):3097-3102.

    26. [26]

      ZHANG Y Y, TANG J L, NI Z G, ZHAO Y, JIA F F, LUO Q, MAO L Q, ZHU Z H, WANG F Y. J. Phys. Chem. Lett., 2021, 12(22):5279-5285.

    27. [27]

      HU Q Y, WEBER C, CHENG H W, RENNER F U, VALTINER M. J. ChemPhysChem, 2017, 18(21):3056-3065.

  • 加载中
    1. [1]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    2. [2]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    3. [3]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    4. [4]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-0. doi: 10.3866/PKU.WHXB202308048

    5. [5]

      Yan Zhang Xiaoyan Cao Yiming Li Shuwei Xia Mutai Bao . Comparison of Electrolyte Solutions Section in Physical Chemistry Textbooks at Home and Abroad. University Chemistry, 2025, 40(9): 303-309. doi: 10.12461/PKU.DXHX202502027

    6. [6]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    7. [7]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    8. [8]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    9. [9]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    10. [10]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    11. [11]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    12. [12]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    13. [13]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    14. [14]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    15. [15]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    16. [16]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    17. [17]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    18. [18]

      Jianan Fang Youhao Gu Zexuan Gui Laiying Zhang Jiawei Yan Ruming Yuan Xiaoming Xu . Experimental Improvement and Expansion of the Electromotive Force Method to Determine the Mean Activity Coefficient of Electrolyte Solution. University Chemistry, 2025, 40(11): 263-271. doi: 10.12461/PKU.DXHX202504055

    19. [19]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    20. [20]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

Metrics
  • PDF Downloads(18)
  • Abstract views(1446)
  • HTML views(336)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return