Citation: YE Jing-Hong,  WU Qing-Chuan,  ZONG Zhi-Qiang,  ZHANG Xiao-Jiang,  CAI Dong-Qing,  WANG Dong-Fang. Progress in Removal of Heavy Metal Ions by Electrochemical Method[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 830-838. doi: 10.19756/j.issn.0253-3820.210852 shu

Progress in Removal of Heavy Metal Ions by Electrochemical Method

  • Corresponding author: WANG Dong-Fang, dfwang@dhu.edu.cn
  • Received Date: 30 December 2021
    Revised Date: 27 January 2022

    Fund Project: Supported by the National Natural Science Foundation of China(No. 52000025), the Key Research and Development Program of Guangdong Province, China(No. 2020B0202010005), the Key Research and Development Program of Inner Mongolia Autonomous Region, China(No. 2021GG0300) and the Key Research and Development Program of Ningxia Hui Autonomous Region, China(No. 2018BBF02021).

  • Heavy metal ions(HMIs) are toxic and non-degradable, possessing a serious threat to the ecological environment, biodiversity and human health. Electrochemical method is an effective method for treating HMIs wastewater, and electrode materials are the critical components in the removal of HMIs. This work reviewed the mechanism of HMIs in the process of electrochemistry, such as electrosorption, electro-oxidation, electro-reduction, and electrodeposition. In addition, the effect of electrode materials on the removal of HMIs was also discussed, including removal efficiency, removal mechanism and current efficiency. At last, the development trends of electrochemical methods and electrode materials were prospected according to the advantages and bottlenecks of HMIs removal.
  • 加载中
    1. [1]

      KIM Y, LIN Z, JEON I, VAN VOORHIS T, SWAGER T M. J. Am. Chem. Soc., 2018, 140(43):14413-14420.

    2. [2]

      NADERI A, DELAVAR M A, GHORBANI Y, KABOUDIN B, HOSSEINI M. Appl. Clay Sci., 2018, 158:236-245.

    3. [3]

      BEHBAHANI E S, DASHTIAN K, GHAEDI M. J. Hazard. Mater., 2021, 410:124560.

    4. [4]

      ZHENG J, XIA L, SONG S. RSC Adv., 2017, 7(38):23543-23549.

    5. [5]

      CHEN R, SHEEHAN T, NG J L, BRUCKS M, SU X. Environ. Sci.:Water Res. Technol., 2020, 6(2):258-282.

    6. [6]

      JIN W, HU M. J. Electrochem. Soc., 2019, 166(2):E29-E34.

    7. [7]

      ZHANG Y, ZHANG D, ZHOU L, ZHAO Y, CHEN J, CHEN Z, WANG F. Chem. Eng. J., 2018, 336:690-700.

    8. [8]

      ALLIOUX F M, KAPRUWAN P, MILNE N, KONG L, FATTACCIOLI J, CHEN Y, DUMEE L F. Sep. Purif.Technol., 2018, 194:26-32.

    9. [9]

      PAN L, WANG Z, YANG Q, HUANG R. Nanomaterials, 2018, 8(11):957.

    10. [10]

      WANG X, WANG Z, CHEN H, WU Z. J. Hazard. Mater., 2017, 339:182-190.

    11. [11]

      WU Q, WANG D, CHEN C, PENG C, CAI D, WU Z. J. Environ. Manage., 2021, 290:112626.

    12. [12]

      WANG H, ZHANG H, ZHANG X, LI Q, CHENG C, SHEN H, ZHANG Z. Environ. Res., 2020, 186:109582.

    13. [13]

      ZHANG Y N, NIU Q, GU X, YANG N, ZHAO G. Nanoscale, 2019, 11(25):11992-12014.

    14. [14]

    15. [15]

      GONZALEZ M A, TROCOLI R, PAVLOVIC I, BARRIGA C, LA MANTIA F. Phys. Chem. Chem. Phys., 2016, 18(3):1838-1845.

    16. [16]

      YANG L M, HU W B, CHANG Z W, LIU T, FANG D F, SHAO P H, SHI H, LUO X B. Environ. Int., 2021, 152:106512.

    17. [17]

      HU C, LIU F, LAN H, LIU H, QU J. J. Colloid Interface Sci., 2015, 446:359-365.

    18. [18]

      WANG P S, MA W T, XUE S, WANG L, CHEN Y, WANG Y L. Sep. Purif. Technol., 2021, 276:119336.

    19. [19]

      SON M, JEONG K, YOON N, SHIM J, PARK S, PARK J, CHO K H. Chemosphere, 2021, 276:130133.

    20. [20]

      WANG C, CHEN L, LIU S. J. Colloid Interface Sci., 2019, 548:160-169.

    21. [21]

      DORJI P, PHUNTSHO S, KIM D I, LIM S, PARK M J, HONG S, SHON H K. Chemosphere, 2021, 287:132169.

    22. [22]

      SU X, HATTON T A. Adv. Colloid Interface Sci., 2017, 244:6-20.

    23. [23]

      JIN W, ZHANG Y. ACS Sustain. Chem. Eng., 2020, 8(12):4693-4707.

    24. [24]

      ZHANG C, HE D, MA J, TANG W, WAITE T D. Water Res., 2018, 128:314-330.

    25. [25]

      KALFA A, SHAPIRA B, SHOPIN A, COHEN I, AVRAHAM E, AURBACH D. Chemosphere, 2020, 241:125003.

    26. [26]

      WANG Z, XU X, KIM J, MALGRAS V, MO R, LI C, LIN Y, TAN H, TANG J, PAN L, BANDO Y, YANG T, YAMAUCHI Y. Mater. Horiz., 2019, 6(7):1433-1437.

    27. [27]

      CAI Y, WANG Y, HAN X, ZHANG L, XU S, WANG J. J. Electroanal. Chem., 2016, 768:72-80.

    28. [28]

      WANG L, WANG M, HUANG Z, CUI T, GUI X, KANG F, WANG K, WU D. J. Mater. Chem., 2011, 21(45):18295-18299.

    29. [29]

      YANG Z, JIN L, LU G, XIAO Q, ZHANG Y, JING L, ZHANG X, YAN Y, SUN K. Adv. Funct. Mater., 2014, 24(25):3917-3925.

    30. [30]

      ZHU Y, ZHANG G, XU C, WANG L. ACS Appl. Mater. Interfaces, 2020, 12(26):29706-29716.

    31. [31]

    32. [32]

      AL RADI M, SAYED E T, ALAWADHI H, ABDELKAREEM M A. Crit. Rev. Environ. Sci. Technol., 2021, DOI10.1080/10643389.2021.1902698.

    33. [33]

      XU X, LIU Y, WANG M, YANG X, ZHU C, LU T, ZHAO R, PAN L. Electrochim. Acta, 2016, 188:406-413.

    34. [34]

      DAI M, ZHANG M, XIA L, LI Y, LIU Y, SONG S. ACS Sustainable Chem. Eng., 2017, 5(8):6532-6538.

    35. [35]

      GAIKWAD M S, BALOMAJUMDER C. Sep. Purif. Technol., 2018, 195:305-313.

    36. [36]

      BHARATH G, RAMBABU K, BANAT F, HAI A, ARANGADI A F, PONPANDIAN N. Sci. Total Environ., 2019, 691:713-726.

    37. [37]

      LIU Y, QIAO Y, ZHANG W, LI Z, HU X, YUAN L, HUANG Y. J. Mater. Chem., 2012, 22(45):24026.

    38. [38]

      WANG B, PARK J, SU D, WANG C, AHN H, WANG G. J. Mater. Chem., 2012, 22(31):15750.

    39. [39]

      YIN H, ZHAO S, WAN J, TANG H, CHANG L, HE L, ZHAO H, GAO Y, TANG Z. Adv. Mater., 2013, 25(43):6270-6276.

    40. [40]

      WANG H Y, HE Y J, CHAI L Y, LEI H, YANG W C, HOU L J, YUAN T, JIN L F, TANG C J, LUO J. Carbon, 2019, 153:12-20.

    41. [41]

      PENG Q, LIU L, LUO Y, ZHANG Y, TAN W, LIU F, SUIB S L, QIU G. ACS Appl. Mater. Interfaces, 2016, 8(50):34405-34413.

    42. [42]

      SU X, TAN K J, ELBERT J, RÜTTIGER C, GALLEI M, JAMISON T F, HATTON T A. Energy Environ. Sci., 2017, 10(5):1272-1283.

    43. [43]

      QIAO Q, YANG X, LIU L, LUO Y, TAN W, LIU C, DANG Z, QIU G. J. Hazard. Mater., 2020, 390:122165.

    44. [44]

    45. [45]

      LI M, PARK H G. ACS Appl. Mater. Interfaces, 2018, 10(3):2442-2450.

    46. [46]

      AMARRAY A, EL GHACHTOULI S, SAMIH Y, DAHBI M, AZZI M. Desalination, 2022, 521:115307.

    47. [47]

      LIU L H, QIU G H, SUIB S L, LIU F, ZHENG L R, TAN W F, QIN L H. Chem. Eng. J., 2017, 328:464-473.

    48. [48]

      LI N, AN J, WANG X, WANG H, LU L, REN Z. Desalination, 2017, 419:20-28.

    49. [49]

      BAKER C O, HUANG X W, NELSON W, KANER R B. Chem. Soc. Rev., 2017, 46(5):1510-1525.

    50. [50]

      WEI Y, XU L, YANG K, WANG Y, WANG Z, KONG Y, XUE H. J. Electrochem. Soc., 2017, 164(2):E17-E22.

    51. [51]

      LI Y, QI J, LI J, SHEN J, LIU Y, SUN X, SHEN J, HAN W, WANG L. ACS Sustainable Chem. Eng., 2017, 5(8):6635-6644.

    52. [52]

      LUO J Y, TIAN D C, DING Z B, LU T, XU X T, PAN L K. J. Electroanal. Chem., 2019, 855:113488.

    53. [53]

      GAO Y, LI Z, FU Z, ZHANG H, WANG G, ZHOU H. Sep. Purif. Technol., 2021, 262:118336.

    54. [54]

      LIN S, YANG X, LIU L, LI A, QIU G. J. Environ. Manage., 2022, 301:113921.

    55. [55]

      TAN K J, SU X, HATTON T A. Adv. Funct. Mater., 2020, 30(15):1910363.

    56. [56]

      SRIRAM S, NAMBI I M, CHETTY R. Electrochim. Acta, 2018, 284:427-435.

    57. [57]

      YANG X, LIU L, ZHANG M, TAN W, QIU G, ZHENG L. J. Hazard. Mater., 2019, 374:26-34.

    58. [58]

      SARKAR A, SARKAR A, PAUL B, KHAN G G. ChemCatChem, 2018, 10(19):4369-4379.

    59. [59]

      GAO K, CHEN J, LIU Z, LI Y, WU Y, ZHAO J, NA P. Chem. Eng. J., 2019, 360:1223-1232.

    60. [60]

      WANG Y, LI W, LI H, YE M, ZHANG X, GONG C, ZHANG H, WANG G, ZHANG Y, YU C. Chem. Eng. J., 2021, 414:128925.

    61. [61]

      BHOSALE M E, CHAE S, KIM J M, CHOI J Y. J. Mater. Chem. A, 2018, 6(41):19885-19911.

    62. [62]

      SU X, KUSHIMA A, HALLIDAY C, ZHOU J, LI J, HATTON T A. Nat. Commun., 2018, 9:4701.

    63. [63]

      WANG H, YUAN X, WU Y, CHEN X, LENG L, WANG H, LI H, ZENG G. Chem. Eng. J., 2015, 262:597-606.

    64. [64]

      XU Y, CHEN J, CHEN R, YU P, GUO S, WANG X. Water Res., 2019, 160:148-157.

    65. [65]

      KIM K, COTTY S, ELBERT J, CHEN R, HOU C H, SU X. Adv. Mater., 2020, 32(6):1906877.

    66. [66]

      SUN M, ZHANG G, QIN Y, CAO M, LIU Y, LI J, QU J, LIU H. Environ. Sci. Technol., 2015, 49(15):9289-9297.

    67. [67]

    68. [68]

      HANNULA P M, KHALID M K, JANAS D, YLINIEMI K, LUNDSTRöM M. J. Cleaner Prod., 2019, 207:1033-1039.

    69. [69]

      JIN W, SU J, ZHENG S, LEI H. J. Electrochem. Soc., 2017, 164(12):D723-D728.

    70. [70]

      LIU C, WU T, HSU P C, XIE J, ZHAO J, LIU K, SUN J, XU J, TANG J, YE Z, LIN D, CUI Y. ACS Nano, 2019, 13(6):6431-6437.

    71. [71]

      DOUGLAS F C, MATTHEW D M, BRUCE E L. Environ. Sci. Technol., 2009, 43(7):2179-2183.

    72. [72]

      KULEYIN A, UYSAL H E. Int. J. Electrochem. Sci., 2020, 15(2):1474-1485.

    73. [73]

      WANG C, LI T, YU G, DENG S. Chemosphere, 2021, 263:128208.

    74. [74]

      LOU W, CAI W, LI P, SU J, ZHENG S, ZHANG Y, JIN W. Powder Technol., 2018, 326:84-88.

    75. [75]

      SU J, LIN X, ZHENG S, NING R, LOU W, JIN W. Sep. Purif. Technol., 2017, 182:160-165.

    76. [76]

      JIN W, LAFOREST P I, LUYIMA A, READ W, NAVARRO L, MOATS M S. RSC Adv., 2015, 5(62):50372-50378.

    77. [77]

      WANG K, MO Z, TANG S, LI M, YANG H, LONG B, WANG Y, SONG S, TONG Y. J. Mater. Chem. A, 2019, 7(23):14129-14135.

    78. [78]

      WANG D, LI Y, PUMA G, LIANOS P, WANG C, WANG P. J. Hazard. Mater., 2017, 323:681-689.

    79. [79]

      YANG Z, LI J, CHEN F, XU L, JIN Y, XU S, WANG J, SHEN X, ZHANG L, SONG Y. Sci. Total Environ., 2021, 798:149327.

  • 加载中
    1. [1]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    2. [2]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    3. [3]

      Tinghui ANDong XIANGJiaqi LIJiawei WANGShuming YUNan WANGKedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412

    4. [4]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    5. [5]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    6. [6]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    7. [7]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    8. [8]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    12. [12]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    13. [13]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    14. [14]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    15. [15]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    16. [16]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    17. [17]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    18. [18]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    19. [19]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    20. [20]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

Metrics
  • PDF Downloads(38)
  • Abstract views(1281)
  • HTML views(255)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return