Citation: WANG Xue-Mei,  ZHAO Sui-Xin,  LI Hai-Yin,  LI Feng. Target-controlled In-Situ Formation of Quantum Dots for Fluorescence Sensing of Methidathion[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(3): 375-383. doi: 10.19756/j.issn.0253-3820.210847 shu

Target-controlled In-Situ Formation of Quantum Dots for Fluorescence Sensing of Methidathion

  • Corresponding author: LI Hai-Yin,  LI Feng, 
  • Received Date: 18 November 2021
    Revised Date: 9 December 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21775082, 22076090).

  • A highly sensitive and reliable fluorescence sensor for detection of organophosphorus pesticide (OP) based on target-controlled in-situ formation of sadmium sulfide quantum dots (CdS QDs) was developed. Acetylcholinesterase (AChE) catalyzed hydrolysis of acetylthiocholine (ATCh) into thiocholine (TCh), which acted as stabilizing agent to induce the formation of CdS QDs, subsequently improving the emission intensity. Whereas, upon the addition of target methidathion (Met), AChE activity was depressed and thus was not capable of catalyzing hydrolysis of ATCh into TCh. In this context, CdS QDs were not formed and the emission intensity of detection solution was not enhanced, justifying the close relationship between fluorescence signal and Met concentration. Therefore, highly sensitive analysis of Met was achieved on the basis of change in fluorescence emission with a limit of detection of 0.024 ng/mL (S/N=3). Furthermore, the developed fluorescence sensor was successfully employed to detect Met in extract solution of rice with recoveries of 96.7%-102.4%. Overall, the CdS QDs-based sensor presented a new thinking way to highly sensitive and reliable analysis of OPs, favoring OPs-related food safety.
  • 加载中
    1. [1]

      LUO D Q, HUANG X H, LIU B Y, ZOU W Y, WU Y G. J. Agric. Food Chem., 2021, 69(11):3537-3547.

    2. [2]

      CAI Y, FANG J K, WANG B F, ZHANG F S, SHAO G, LIU Y J. Sens. Actuators, B, 2019, 292:156-163.

    3. [3]

      LIU B Y, TANG Y, YANG Y X, WU Y G. Food Control, 2021, 129:108208.

    4. [4]

      ZHOU J W, ZOU X M, SONG S H, CHEN G H. J. Agric. Food Chem., 2018, 66(6):1307-1319.

    5. [5]

      CHEN J L, CHEN X J, HUANG Q Y, LI W L, YU Q X, ZHU L J, ZHU T W, LIU S W, CHI Z G. ACS Appl. Mater. Interfaces, 2019, 11(36):32689-32696.

    6. [6]

      GARAI-IBABE G, SAA L, PAVLOV V. Analyst, 2014, 139(1):280-284.

    7. [7]

      HE X J, DENG Z A, XU W, LI Y H, XU C C, CHEN H, SHEN J L. Sens. Actuators, B, 2020, 321:128450.

    8. [8]

      LU C, CHEN X. ACS Nano, 2021, 15(12):18777-18793.

    9. [9]

      SUN J H, ZHOU F, HU H, LI N, XIA M M, WANG L, WANG X Y, WANG G F. Anal. Chem., 2020, 92(8):6136-6143.

    10. [10]

      AHMAD I, ZHOU Z, LI H Y, ZANG S Q. Sens. Actuators, B, 2020, 304:127379.

    11. [11]

      ZHANG J, ZHOU W D, ZHAI L J, NIU X Y, HU T P. CrystEngComm, 2020, 22(6):1050-1056.

    12. [12]

      YUAN X Y, ZHANG D W, ZHU X C, LIU H L, SUN B G. Food Chem., 2021, 342:128299.

    13. [13]

      HE Y, HU F X, ZHAO J W, YANG G M, ZHANG Y Y, CHEN S H, YUAN R. Anal. Chem., 2021, 93(25):8783-8790.

    14. [14]

      HE W M, ZHOU Z, HAN Z, LI S, ZHOU Z, MA L F, ZANG S Q. Angew. Chem., Int. Ed., 2021, 60(15):8505-8509.

    15. [15]

      CAO Z Y, SHU Y F, QIN H Y, SU B, PENG X G. ACS Cent. Sci., 2020, 6(7):1129-1137.

    16. [16]

      ZHAO Q, LU D, ZHANG G Y, ZHANG D, SHI X B. Talanta, 2021, 223(Pt 1):121722.

    17. [17]

      CHEN Z P, WANG H, ZHANG Z Y, CHEN L X. Anal. Chem., 2019, 91(2):1254-1259.

    18. [18]

      CHEN X J, HE J H, TAN G Y, LIANG J, HOU Y X, WANG M, WANG B M. Food Chem., 2019, 291:132-138.

    19. [19]

      JIA M, CHEN S, SHI T T, LI C Y, WANG Y P, ZHANG H Y. Food Chem., 2021, 344:128602.

    20. [20]

      DONG C Y, SHI H X, HAN Y R, YANG Y Y, WANG R X, MEN J Y. Eur. Polym. J., 2021, 145:110231.

    21. [21]

      JIA M F, ZHANG Z, LI J H, MA X, CHEN L X, YANG X B. TrAC-Trends Anal. Chem., 2018, 106:190-201.

    22. [22]

      MADIKIZELA L M, TAVENGWA N T, TUTU H, CHIMUKA L. Trends Environ. Anal. Chem., 2018, 17:14-22.

    23. [23]

      KORRAM J, DEWANGAN L, KARBHAL I, NAGWANSHI R, VAISHANAV S K, GHOSH K K, SATNAMI M L. RSC Adv., 2020, 10(41):24190-24202.

    24. [24]

      SINGH A P, BALAYAN S, HOODA V, SARIN R K, CHAUHAN N. Int. J. Biol. Macromol., 2020, 164:3943-3952.

    25. [25]

      LV B J, WEI M, LIU Y J, LIU X, WEI W, LIU S Q. Microchim. Acta, 2016, 183(11):2941-2948.

    26. [26]

      WANG D, LIN B X, CAO Y J, GUO M L, YU Y. J. Agric. Food Chem., 2016, 64(30):6042-6050.

    27. [27]

      WANG J L, XIA Q, ZHANG A P, HU X Y, LIN C M. J. Zhejiang Univ. Sci. B, 2012, 13(4):267-273.

    28. [28]

      HUANG X B, LV M, MA Q J, ZHANG Y Y, XU H. J. Agric. Food Chem., 2021, 69(48):14488-14500.

    29. [29]

      GHOTO S A, KHUHAWAR M Y, JAHANGIR T M, MANGI J U D. J. Nanostruct. Chem., 2019, 9(2):77-93.

    30. [30]

      CHEN Q, SUN Y D, LIU S J, ZHANG J, ZHANG C, JIANG H, HAN X Y, HE L F, WANG S H, ZHANG K. Sens. Actuators, B, 2021, 344:130278.

    31. [31]

      FAHIMI-KASHANI N, HORMOZI-NEZHAD M R. Anal. Chem., 2016, 88(16):8099-8106.

    32. [32]

      WANG J Y, ZHANG J Y, WANG J, FANG G Z, LIU J F, WANG S. J. Hazard. Mater., 2020, 389:122074.

    33. [33]

      GUAN J P, YANG J, ZHANG Y, ZHANG X X, DENG H J, XU J, WANG J Y, YUAN M S. Talanta, 2021, 224:121834.

    34. [34]

      GUO W Y, FU Y X, LIU S Y, MEI L C, SUN Y, YIN J, YANG W C, YANG G F. Anal. Chem., 2021, 93(18):7079-7085.

    35. [35]

      FAN Y, LIU L, SUN D L, LAN H Y, FU H Y, YANG T M, SHE Y B, NI C. Anal. Chim. Acta, 2016, 916:84-91.

    36. [36]

      CHEN J L, LI M Q, ZHOU X Q, XIE A L, CAI Z W, FU C L, PENG Y M, ZHANG H, LIU L H. J. Agric. Food Chem., 2021, 69(46):13942-13952.

    37. [37]

      ZHANG J, WU Q Q, ZHONG Y R, WANG Z, HE Z Z, ZHANG Y Q, WANG M H. J. Agric. Food Chem., 2021, 69(45):13416-13424.

    38. [38]

      YAN X, LI H X, HU T Y, SU X G. Biosens. Bioelectron., 2017, 91:232-237.

    39. [39]

      CUI H F, ZHANG T T, LV Q Y, SONG X, ZHAI X J, WANG G G. Biosens. Bioelectron., 2019, 141:111452.

    40. [40]

      MONDOL M M H, JHUNG S H. Chem. Eng. J., 2021, 421(Part 1):129688.

    41. [41]

      ALDEWACHI H, CHALATI T, WOODROOFE M N, BRICKLEBANK N, SHARRACK B, GARDINER P. Nanoscale, 2017, 10(1):18-33.

    42. [42]

      LIN B X, YAN Y, GUO M L, CAO Y J, YU Y, ZHANG T Y, HUANG Y, WU D. Food Chem., 2018, 245:1176-1182.

    43. [43]

      LIU M L, WEI J Y, WANG Y, OUYANG H, FU Z F. Talanta, 2019, 195:706-712.

    44. [44]

      SAHOO D, MANDAL A, MITRA T, CHAKRABORTY K, BARDHAN M, DASGUPTA A K. J. Agric. Food Chem., 2018, 66(2):414-423.

    45. [45]

      CHEN Q D, FUNG Y. Electrophoresis, 2010, 31(18):3107-3114.

    46. [46]

      WANG P Y, LI H H, HASSAN M M, GUO Z M, ZHANG Z Z, CHEN Q. J. Agric. Food Chem., 2019, 67(14):4071-4079.

    47. [47]

      DONG J J, YANG H T, LI Y, LIU A R, WEI W, LIU S Q. Anal. Chim. Acta, 2020, 1131:102-108.

    48. [48]

      HONG C Y, YE S S, DAI C Y, WU C Y, CHEN L L, HUANG Z Y. Anal. Bioanal. Chem., 2020, 412(29):8177-8184.

    49. [49]

      WANG X D, YANG Y Y, DONG J, BEI F, AI S Y. Sens. Actuators, B, 2014, 204:119-124.

    50. [50]

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    3. [3]

      Junyuan Zhang Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118

    4. [4]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    5. [5]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    8. [8]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    9. [9]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    10. [10]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

    11. [11]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    12. [12]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    13. [13]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Shuai Yuan Yaofeng Yuan . Academician Chengye Yuan and Organic Phosphorus Chemistry. University Chemistry, 2025, 40(7): 393-400. doi: 10.12461/PKU.DXHX202409123

    17. [17]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    18. [18]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    19. [19]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    20. [20]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

Metrics
  • PDF Downloads(11)
  • Abstract views(1098)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return