Citation: DING Yi,  DIAO Quan,  LIU Dong,  LIU An-fei,  JIAO Ming-li,  ZHU Gen-xing. Synthesis of Graphene Quantum Dots and Application in Gas Sensing[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 495-505. doi: 10.19756/j.issn.0253-3820.210843 shu

Synthesis of Graphene Quantum Dots and Application in Gas Sensing

  • Corresponding author: DIAO Quan,  JIAO Ming-li, 
  • Received Date: 17 November 2021
    Revised Date: 20 January 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 61703446, 51973246)

  • Graphene quantum dots(GQDs), as a kind of zero-dimensional carbon nano material, not only have excellent properties of graphene, but also have quantum confinement effect and boundary effect. GQDs with different nano-size can be obtained by various preparation methods. The surface of GQDs has abundant functional groups, which can be further functionalized by compounding with other materials to meet the detection requirements of different gases and broaden its application range in gas sensing. In this review, the preparation methods of GQDs and their applications in gas sensing are introduced. In addition, the application prospect and development direction of GQDs in gas sensing are also prospected.
  • 加载中
    1. [1]

      YAN Y, GONG J, CHEN J, ZENG Z, HUANG W, PU K, LIU J, CHEN P. Adv. Mater., 2019, 31(21):1808283.

    2. [2]

      ABBAS A, MARIANA L T, PHAN A N. Carbon, 2018, 140:77-99.

    3. [3]

      GHAFFARKHAH A, HOSSEINI E, KAMKAR M, SEHAT A A, DORDANIHAGHIGHI S, ALLAHBAKHSH A,VAN DER KUUR C, ARJMAND M. Small, 2022, 18(2):2102683.

    4. [4]

      ZHENG X T, ANANTHANARAYANAN A, LUO K Q, CHEN P. Small, 2015, 11(14):1620-1636.

    5. [5]

    6. [6]

      CHEN W, LI F, OOI P C, YE Y, KIM T W, GUO T. Sens. Actuators, B, 2016, 222:763-768.

    7. [7]

      ABBASABADI M K, ZAND H R E, KHODABAKHSHI S, GHOLAMI P, RASHIDI A. Res. Chem. Intermed.,2021, 47(6):2279-2296.

    8. [8]

    9. [9]

    10. [10]

      MENG Q N, CUI J N, TANG Y F, HAN Z H, ZHAO K, ZHANG G J, DIAO Q. Ceram. Int., 2019, 45(3):4103-4107.

    11. [11]

      DIAO Q, YIN Y N, ZHANG X M, LI J, JIAO M L, CAO J, QIN Q, YANG K, ZHU G X, XU X M. Funct. Mater.Lett., 2020, 13(3):2050013.

    12. [12]

      HAO M, ZENG W, LI Y Q, WANG Z C. Rare Metals, 2021, 40(6):1494-1514.

    13. [13]

      HAKIMI M, SALEHI A, BOROUMAND F A. IEEE Sens. J., 2016, 16(16):6149-6154.

    14. [14]

      LU J, YANG J X, WANG J, LIM A, WANG S, LOH K P. ACS Nano, 2009, 3(8):2367-2375.

    15. [15]

      PENG J, GAO W, GUPTA B K, LIU Z, ROMERO-ABURTO R, GE L, SONG L, ALEMANY L B, ZHAN X, GAO G,VITHAYATHIL S A, KAIPPARETTU B A, MARTI A A, HAYASHI T, ZHU J J, AJAYAN P M. Nano Lett., 2012,12(2):844-849.

    16. [16]

      PAN D, ZHANG J, LI Z, WU M. Adv. Mater., 2010, 22(6):734-738.

    17. [17]

      WONGRAT E, NUENGNIT T, PANYATHIP R, CHANLEK N, HONGSITH N, CHOOPUN S. Sens. Actuators, B,2021, 326:128983.

    18. [18]

      HUANG H, YANG S, LI Q, YANG Y, WANG G, YOU X, MAO B, WANG H, MA Y, HE P, LIU Z, DING G, XIE X.Langmuir, 2018, 34(1):250-258.

    19. [19]

      SU J, ZHANG X, TONG X, WANG X, YANG P, YAO F, GUO R, YUAN C. Mater. Lett., 2020, 271:127806.

    20. [20]

      LU J, YEO P S, GAN C K, WU P, LOH K P. Nat. Nanotechnol., 2011, 6(4):247-252.

    21. [21]

      KACIULIS S, MEZZI A, SOLTANI P, PIZZOFERRATO R, CIOTTA E, PROSPOSITO P. Thin Solid Films, 2019,673:19-25.

    22. [22]

      HOANG T T, PHAM H P, TRAN Q T. J. Nanomater., 2020, 2020:1-8.

    23. [23]

      TANG L, JI R, LI X, TENG K S, LAU S P. Part. Part. Syst. Char., 2013, 30(6):523-531.

    24. [24]

      SHEHAB M, EBRAHIM S, SOLIMAN M. J. Lumin., 2017, 184:110-116.

    25. [25]

      DONG Y Q, SHAO J W, CHEN C Q, LI H, WANG R X, CHI Y W, LIN X M, CHEN G N. Carbon, 2012, 50(12):4738-4743.

    26. [26]

      WANG Z, YU J, ZHANG X, LI N, LIU B, LI Y, WANG Y, WANG W, LI Y, ZHANG L, DISSANAYAKE S, SUIB S L, SUN L. ACS Appl. Mater. Interfaces, 2016, 8(2):1434-1439.

    27. [27]

      LIN Q, CHEN H, CAO J, ZHANG J. ACS Omega, 2021, 6(38):24940-24948.

    28. [28]

      ABBAS A, TABISH T A, BULL S J, LIM T M, PHAN A N. Sci. Rep., 2020, 10:21262.

    29. [29]

      YEH T F, HUANG W L, CHUNG C J, CHIANG I T, CHEN L C, CHANG H Y, SU W C, CHENG C, CHEN S J,TENG H. J. Phys. Chem. Lett., 2016, 7(11):2087-2092.

    30. [30]

      YE R, PENG Z, METZGER A, LIN J, MANN J A, HUANG K, XIANG C, FAN X, SAMUEL E L G, ALEMANY L B, MART A A, TOUR J M. ACS Appl. Mater. Interfaces, 2015, 7(12):7041-7048.

    31. [31]

      KWON W, KIM Y H, LEE C L, LEE M, CHOI H C, LEE T W, RHEE S W. Nano Lett., 2014, 14(3):1306-1311.

    32. [32]

    33. [33]

      MENG F L, SHI X, YUAN Z Y, JI H Y, QIN W B, SHEN Y B, XING C Y. Sens. Actuators, B, 2022, 350:130867.

    34. [34]

      LV Y K, LI Y Y, YAO H C, LI Z J. Sens. Actuators, B, 2021, 339:129882.

    35. [35]

      HAKIMI M, SALEHI A, BOROUMAND F A, MOSLEH N. IEEE Sens. J., 2018, 18(6):2245-2252.

    36. [36]

      PARVIZI R, AZAD S, DASHTIAN K, GHAEDI M, HEIDARI H. Sci. Rep., 2019, 9:3798.

    37. [37]

      RAHIMI K, YAZDANI A. Mater. Lett., 2018, 228(OCT.1):65-67.

    38. [38]

      ZHANG Y M, ZHAO J H, SUN H L, ZHU Z Q, ZHANG J, LIU Q J. Sens. Actuators, B, 2018, 266:364-374.

    39. [39]

      LIU W, ZHOU X, XU L, ZHU S, YANG S, CHEN X, DONG B, BAI X, LU G, SONG H. Nanoscale, 2019, 11(24):11496-11504.

    40. [40]

      ARUNRAGSA S, SEEKAEW Y, PON-ON W, WONGCHOOSUK C. Diamond Relat. Mater., 2020, 105:107790.

    41. [41]

      BAI H, SHI G. Sensors, 2007, 7(3):267-307.

    42. [42]

      GAVGANI J N, HASANI A, NOURI M, MAHYARI M, SALEHI A. Sens. Actuators, B, 2016, 229:239-248.

    43. [43]

      LV Y K, LI Y Y, ZHOU R H, PAN Y P, YAO H C, LI Z J. ACS Appl. Mater. Interfaces, 2020, 12(30):34245-34253.

    44. [44]

      ZHANG Y H, WANG C N, YUE L J, CHEN J L, GONG F L, FANG S M. Phys. E(Amsterdam, Neth.), 2021, 133:114807.

    45. [45]

      CHEN Z, WANG D, WANG X, YANG J. Chin. Chem. Lett., 2020, 31(8):2063-2066.

    46. [46]

      SHAO S F, KIM H W, KIM S S, CHEN Y Y, LAI M. Appl. Surf. Sci., 2020, 516:145932.

    47. [47]

      CHU X F, DAI P, DONG Y P, SUN W Q, BAI L S, ZHANG W B. J. Mater. Sci.:Mater. Electron., 2017, 28(24):19164-19173.

    48. [48]

      RAEYANI D, SHOJAEI S, AHMADI-KANDJANI S. Superlattices Microstruct., 2018, 114:321-330.

    49. [49]

      RAEYANI D, SHOJAEI S, AHMADI-KANDJANI S. Mater. Res. Express, 2020, 7(1):015608.

  • 加载中
    1. [1]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    2. [2]

      Xiangyu CHENZhenzhen MIAOLigang XUGuangbao WUZhuang LIUWenzhen LÜRunfeng CHEN . Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2201-2217. doi: 10.11862/CJIC.20250056

    3. [3]

      Rongzhan LOUQiaoling KANGZhenchao BAIDongyun LIYang XURui WANGQingyi LU . Research progress of sodium ion high entropy layered oxide cathode. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    8. [8]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    9. [9]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    11. [11]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    12. [12]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    13. [13]

      Wanzhang Zhang Yalan Zhong Chi Huang . Improved Calibration Method for Wet Gas Flowmeters. University Chemistry, 2025, 40(11): 254-262. doi: 10.12461/PKU.DXHX202412121

    14. [14]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    15. [15]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    16. [16]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

Metrics
  • PDF Downloads(12)
  • Abstract views(951)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return