Citation: HU Shuang,  HUA Zhen-Dong,  HUANG Yu,  CHENG Fang-Bin,  LIU Yao. Fast Separation and Detection of Fentanyls Isomers by Ultra Performance Convergence Chromatography-Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 964-972. doi: 10.19756/j.issn.0253-3820.210839 shu

Fast Separation and Detection of Fentanyls Isomers by Ultra Performance Convergence Chromatography-Mass Spectrometry

  • Corresponding author: HUA Zhen-Dong,  LIU Yao, 
  • Received Date: 16 November 2021
    Revised Date: 5 March 2022

    Fund Project: Supported by the Scientific Research Project of Beijing Municipal Education Commission(No. KM202114019001) and the Science and Technology to Strengthen Basic Work Project of Ministry of Public Security(No. 2020GABJC21).

  • As a new class of psychoactive substances, fentanyls have the characteristics of wide variety,rapid replacement and extremely similar structures. The accurate identification of their isomers is a major problem faced by drug analysts. Ultra performance convergence chromatography is a powerful tool to achieve efficient separation of isomers. Therefore, a new method was established for fast separation and detection of fentanyls by ultra performance convergence chromatography-mass spectrometry in this work. The separation conditions of the chromatographic column, modifiers and column temperature were optimized. The separation and detection was conducted on Waters ACQUITY UPC2 BEH column with supercritical fluid CO2 as primary mobile phase, methanol containing 20 mmol/L ammonium formate as the modifier, column temperature at 50℃ and a Xevo TQD triple quadrupole as mass spectrometer. A total of 13 kinds of fentanyls were completely separated within 6.5 min with an above 1.5-resolution to all the isomers. The chromatographic peaks were perfectly symmetric. Methodological statistics showed that, 9 kinds of common drugs did not interfere with the determination of 13 kinds of target substances;the detection limits were 0.01-0.05 ng/mL and the relative standard deviations of the retention time were less than 0.6%. Compared with the conventional ultra-high performance liquid chromatography-mass spectrometry detection method, this method had significant advantages in the separation of isomers,which fully met the anti-drug public security departments' needs for the accurate identification of fentanyls.
  • 加载中
    1. [1]

      VARDANYAN R S, HRUBY V J. Future Med. Chem., 2014, 6(4):385-412.

    2. [2]

      MOUNTENEY J, GIRAUDON I, DENISSOV G, GRIFFITHS P. Int. J. Drug Policy, 2015, 26(7):626-631.

    3. [3]

      SUZUKI S. Forensic Sci. Int., 1989, 43(1):15-19.

    4. [4]

      RITTGEN J, PUTZ M, ZIMMERMANN R. Electrophoresis, 2012, 33(11):1595-1605.

    5. [5]

      GILBERT N, ANTONIDES L H, SCHOFIELD C J, COSTELLO A, KILKELLY B, CAIN A R, DALZIEL P R V, HORNER K, MEWIS R E, SUTCLIFFE O B. Drug Test. Anal., 2020, 12(6):798-811.

    6. [6]

      ROJKIEWICZ M, MAJCHRZAK M, CELINSKI R, KUS P, SAJEWICZ M. Drug Test. Anal., 2017, 9(3):405-414.

    7. [7]

      KANAMORI T, IWATA Y T, SEGAWA H, YAMAMURO T, KUWAYAMA K, TSUJIKAWA K, INOUE H. J.Forensic Sci., 2017, 62(6):1472-1478.

    8. [8]

      BUCHALTER S, MARGINEAN I, YOHANNAN J. J. Chromatogr. A, 2019, 1596:183-193.

    9. [9]

      LURIE I S, IIO R. J. Chromatogr. A, 2009, 1216(9):1515-1519.

    10. [10]

      BUSARDO F P, CARLIER J, GIORGETTI R, TAGLIABRACCI A, PACIFICI R, GOTTARDI M, PICHINI S.Front. Chem., 2019, 7(2):184-197.

    11. [11]

      SALEMMILANI R, MOSKIVITS M, MEINHART C D. Analyst, 2019, 144(2):3080-3087.

    12. [12]

      BERNAL J L, MARTIN M T, TORIBIO L. J. Chromatogr. A, 2013, 1313(SI):24-36.

    13. [13]

    14. [14]

    15. [15]

    16. [16]

      PAUK V, ZIHLOVA V, BOROVCOVA L, HAVLICEK V, SCHUG K, LEMR K. J. Chromatogr. A, 2015, 1423:169-176.

    17. [17]

      BREITENBACH S, ROWE W F, MCCORD B. J. Chromatogr. A, 2016, 1440:201-211.

    18. [18]

      CARNES S, BRIEN S, SZEWCZAK A, TREMEAU C L, ROWE W F, MCCORD B, LURIE I S. J. Sep. Sci., 2017, 40(17):3545-3556.

    19. [19]

      SEGAWA H, KUSAKABE K, ISHII A, KATO N, IWATA Y T, YAMAMURO T, KANAMORI T. Anal. Sci. Adv., 2020, 1(1):22-33.

    20. [20]

  • 加载中
    1. [1]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    2. [2]

      Jianquan Liu Xiangshan Wang . Teaching Design and Practice of Naming Rules for Circular Isomer Configuration under the Guidance of Information Literacy. University Chemistry, 2025, 40(7): 352-358. doi: 10.12461/PKU.DXHX202409082

    3. [3]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    4. [4]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    5. [5]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    6. [6]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    7. [7]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    8. [8]

      Xianyong Lu Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037

    9. [9]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    10. [10]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    11. [11]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    12. [12]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    13. [13]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    14. [14]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    15. [15]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    16. [16]

      Shengwen XULonglong YANGHouji CAODeshuang TUXing WEIChangsheng LUHong YAN . Research progress on light-induced functionalization of polyhedral carborane clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2187-2200. doi: 10.11862/CJIC.20250192

    17. [17]

      Honglin Li Shengyan Yang Xiaofei Zhang Xiaodong Wang Yang Zhang Yang Han Guoxu Qin Chuan Li Fanfan Liu . Exploration and Practice of the “One Body, Two Wings” Innovative Talent Training Model for Chemical and Materials Disciplines in Local Applied Undergraduate Universities under the “Emerging Engineering Education” Context. University Chemistry, 2025, 40(11): 83-91. doi: 10.12461/PKU.DXHX202412067

    18. [18]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    19. [19]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    20. [20]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

Metrics
  • PDF Downloads(13)
  • Abstract views(907)
  • HTML views(145)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return