Citation: ZHAO Bin,  TAN Xue-Rong,  FU Yu,  XUE Ming,  XU Dong-Hai,  LIANG Xiu-Chuan,  ZHANG Li. Rapid Determination of Bisphenols in Fruits and Vegetables by QuEChERS-Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 810-818. doi: 10.19756/j.issn.0253-3820.210837 shu

Rapid Determination of Bisphenols in Fruits and Vegetables by QuEChERS-Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry

  • Corresponding author: TAN Xue-Rong, 545619934@qq.com
  • Received Date: 14 November 2021
    Revised Date: 31 December 2021

    Fund Project: Supported by the Guangyuan Science and Technology Project (No.19ZDYF0016).

  • A method for rapid determination of eight kinds of BPs in fruits and vegetables based on QuEChERS combined with ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) was developed. The effects of matrix effect (ME) and extraction recovery (RE) on process efficiency (PE) were discussed. Approximately 10.00 g of homogeneous fruit and vegetable samples were accurately weighed, and 10 mL of acetonitrile and 1.0 g of NaAC were added for extraction, respectively. And then, 2 mL of organic phase was taken into a 15-mL centrifuge tube, and the mixed purifier (33 mg PSA, 33 mg GCB and 10 mg C18) was added for purification. After centrifugation, 0.5 mL of supernatant was added into 0.5 mL of methanol aqueous solution (50%, V/V), and the mixture was analyzed by UPLC-MS/MS. The chromatographic separation was performed on a Waters BEH C18 (100 mm × 2.1 mm, 1.7 μm) column using methanol and 0.1 mmol/L ammonium bicarbonate aqueous solution as mobile phase. Quantitative analysis was performed by isotope internal standard method in the modes of electrospray ionization, anion and multiple reaction monitoring. The results showed that the chromatographic separation of eight kinds of BPs could be completed within 8 min with good linearity and correlation coefficients (R2>0.9990). The limits of detection (LODs) and limits of quantification (LOQs) ranged from 0.01 to 0.10 μg/kg and 0.03 to 0.35 μg/kg, respectively. The average recoveries of eight kinds of BPs in different fruits and vegetables were 67.2%-117.8% with relative standard deviations (RSDs) of 0.1%-8.3%. This method was used to detect BPs in fruits and vegetables from Guangyuan city, and it bisphenol A and bisphenol S were found to be the main contaminants with the detection rates of 80.0% and 47.5%, respectively. The concentrations of bisphenol A and bisphenol S ranged from not detected to 31.84 μg/kg and from not detected to 15.75 μg/kg, respectively. This method could rapidly extract, purify and quantitatively detect eight kinds of BPs in fruits and vegetables with the advantages such as simplicity, high sensitivity, low cost and environmental protection, and was suitable for daily mass screening and confirmation of these contaminants in fruits and vegetables.
  • 加载中
    1. [1]

      KUBIAK A, BIESAGA M. Crit. Rev. Anal. Chem., 2020, 4(50):311-321.

    2. [2]

      SCHMIDT J, MASIC L P. Acta Chim. Slov., 2012, 59(4):722-738.

    3. [3]

      DA C, KANNAN K, TAN H L, ZHENG Z G, FENG Y L, WU Y, WIDELKA M. Environ. Sci. Technol., 2016, 50(11):5438-5453.

    4. [4]

      ROCHESTERJ R, BOLDENA L. Environ. Health Perspect., 2015, 123(7):643-650.

    5. [5]

    6. [6]

      MU X Y, HUANG Y, LI X X, LEI Y L, TENG M M, LI X F, WANG C J, LI Y R. Environ. Sci. Technol., 2018, 52(5):3222-3231.

    7. [7]

      CAO L Y, REN X M, LI C H, ZHANG J, QIN W P, YANG Y, WAN B, GUO L H. Environ. Sci. Technol., 2017, 51(19):11423-11430.

    8. [8]

      QIU W H, YANG M, LIU S, LEI P H, HU L, CHEN B, WU M H, WANG K J. Environ. Sci. Technol., 2018, 52(2):831-838.

    9. [9]

      ZHU M,CHEN X Y, LI Y Y, YIN N Y, FAIOLA F, QIN Z F, WEI W J. Environ. Sci. Technol., 2018, 52(3):1602-1611.

    10. [10]

      GALLART-AYALA H, NÚÑEZ O, LUCCI P. TrAC-Trends Anal. Chem., 2013, 42(1):99-124.

    11. [11]

      YU X H, XUE J C, YAO H, WU Q, VENKATESANA K, HALDENR U, KANNAN K. J. Hazard. Mater., 2015, 299:733-739.

    12. [12]

    13. [13]

      LIAO C Y, KANNAN K. J. Agric. Food Chem., 2013, 61(19):4655-4662.

    14. [14]

    15. [15]

    16. [16]

    17. [17]

      HUANG Y Q, WONG C K C, ZHENG J S, BOUWMAN H, BARRA R, WAHLSTRÖM B, NERETIN L, WONG M H. Environ. Int., 2012, 42:91-99.

    18. [18]

      VANDENBERG L N, COLBORN T, HAYES T B, HEINDEL J J, JACOBS D R, LEE D H, SHIODA T, SOTO A M, SAAL F S V, WELSHONS W V, ZOELLER R T, MYERS J P. Endocr. Rev., 2012, 33(3):378-455.

    19. [19]

      CHOI S J, YUN E S, SHIN J M, KIM Y S, LEE J S, LEE J H, KIM D G, OH Y H, JUNG K, KIMG H. J. Food Prot., 2018, 81(6):903-916.

    20. [20]

    21. [21]

    22. [22]

      ALABI A, CABALLERO-CASERON, RUBIO S. J. Chromatogr. A, 2014, 1336:23-33.

    23. [23]

    24. [24]

      LIU X Y, JI Y S, ZHANG H X, LIU M C. Food Addit. Contam., Part A, 2008, 25(6):772-778.

    25. [25]

      SHAO B, HAN H, LI D M, MA Y L, TU X M, WU Y. Food Chem., 2007, 105(3):1236-1241.

    26. [26]

      FERRER E, SANTONI E, VITTORI S, FONT G, MAHESJ, SAGRATINI G. Food Chem., 2011, 126(1):360-367.

    27. [27]

    28. [28]

      MATUSZEWSKI B K, CONSTANZER M L, CHAVEZ-ENG C M. Anal. Chem., 2003, 75(13):3019-3030.

    29. [29]

      LI G R,YU W Q, XIAO Z J, LONG M, TONG L Y, QIU Y. SN Appl. Sci., 2020, 2(1):35.

    30. [30]

    31. [31]

      LU J, WU J, STOFFELLA P J, WILSONP C. J. Agric. Food Chem., 2013, 61(1):84-89.

    32. [32]

      ČESEN M, LAMBROPOULOU D, LAIMOU-GERANIOU M, KOSJEK T, BLAZNIK U, HEATH D,HEATH E. J. Agric. Food Chem., 2016, 64(46):8866-8875.

    33. [33]

      CUNHA S C, INÁCIO T, ALMADA M, FERREIRA R, FERNANDESJ O. Food Res. Int., 2020, 135:109-293.

    34. [34]

      XIONG L, YAN P, CHU M, GAO Y Q, LI W H, YANG X L. Food Chem., 2017, 244:371-377.

    35. [35]

      CHENG Y, NIE X M, WU H Q, HONG Y H, YANG B C, LIU T, ZHAO D, WANG J F, YAO G H, ZHANG F. Anal. Chim. Acta, 2017, 950:98-107.

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    3. [3]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    4. [4]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    5. [5]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    6. [6]

      Jinglun Wang Hu Zhou Baishu Zheng Guobin Li Ming Yue Zhihua Zhou . Exploration and Practice of “Four Cooperations and Four Integrations” to Cultivate Innovative Talents in Chemical Materials in Local Colleges. University Chemistry, 2024, 39(7): 93-98. doi: 10.12461/PKU.DXHX202405013

    7. [7]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    8. [8]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    9. [9]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    10. [10]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    11. [11]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    12. [12]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    13. [13]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    15. [15]

      Linghua Chen . 基于双联动“三学”模式的食品专业分析化学教学改革. University Chemistry, 2025, 40(8): 78-91. doi: 10.12461/PKU.DXHX202409095

    16. [16]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    17. [17]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    18. [18]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    19. [19]

      Shan ZhaoXu LiuHaotian GuoZonglin LiuPengfei WangJie ShuTingfeng Yi . Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(1): 100129-0. doi: 10.1016/j.actphy.2025.100129

    20. [20]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

Metrics
  • PDF Downloads(15)
  • Abstract views(902)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return