Citation:
JIANG Bing-xue, ZHANG Xiao-mei, WANG Zhi-hong, LI Zhao-jie, ZHAO Xue, XU Jie, HOU Hu, ZHAO Sa, ZHANG Hong-wei, XUE Zhang-hu. Traceability Analysis of Geographical Origin of Fish and Shrimp Products Based on Proteomics[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(4): 613-622.
doi:
10.19756/j.issn.0253-3820.210834
-
The proteomes of white shrimp(Penaeus vannamei), black tiger shrimp(Penaeus monodon), cod(Dissostichus eleginoides) and Atlantic salmon(Salmo salar)from different geographical origins were investigated using ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry based on relatively quantitative differential proteomics. The quantitative protein data of samples from different geographical origins were mined by chemometric tools to reveal proteomic differences. By screening analysis of parameters such as variable importance in projection, S-plot analysis, knife-cut confidence interval and fold change, 15, 3, 2 and 19 potential protein biomarkers corresponding to Penaeus vannamei, Penaeus monodon, Dissostichus eleginoides and Salmo salar were obtained respectively for identifying the geographical origin of fish and shrimp products. The proposed protocol provided an alternative method for geographical provenance of important aquaculture products in international trade and basic data for supporting official control of geographical origin as well as quality controls of aquaculture products.
-
Keywords:
- Shrimp,
- Cod,
- Salmon,
- Proteomics,
- Geographical origin
-
-
-
[1]
-
[2]
ARMANI A, GUARDONE L, LA CASTELLANA R, GIANFALDONI D, GUIDI A, CASTIGLIEGO L. Food Control, 2015, 55:206-214.
-
[3]
TATSADJIEU N L, MAÏWORÉ J, HADJIA M B, LOISEAU G, MONTET D, MBOFUNG C M F. Food Control, 2010, 21(5):673-678.
-
[4]
LE NGUYEN D D, NGOC H H, DIJOUX D, LOISEAU G, MONTET D. Food Control, 2008, 19(5):454-460.
-
[5]
YUN Z Y, SUN Z, XU H Y, SUN Z H, ZHANG Y, LIU Z. Food Sci. Biotechnol., 2017, 26(2):357-362.
-
[6]
LUO R J, JIANG T, CHEN X B, ZHENG C C, LIU H B, YANG J. Food Chem., 2019, 274:1-7.
-
[7]
ZHANG X F, LIU Y, LI Y, ZHAO X D. Food Chem., 2017, 218:269-276.
-
[8]
HAN C, LI L, ZHANG G, DONG S L, TIAN X L. Food Control, 2021, 130:108231.
-
[9]
LI L, BOYD C E, ODOM J. Food Control, 2014, 45:70-75.
-
[10]
LIU X F, XUE C H, WANG Y M, LI Z J, XUE Y, XU J. Food Control, 2012, 23(2):522-527.
-
[11]
ZHANG X F, HAN D M, CHEN X J, ZHAO X D, CHENG J P, LIU Y. Food Chem., 2019, 298:124966.
-
[12]
-
[13]
FENG J H, ZHANG L N, XIA X B, HU W, ZHOU P. Food Res. Int., 2020, 136:109498.
-
[14]
KUMARI N, GRIMBS A, D'SOUZA R N, VERMA S K, CORNO M, KUHNERT N, ULLRICH M S. Food Res. Int., 2018, 111:137-147.
-
[15]
YIN X J, WANG S L, ALOLGA R N, MAIS E, LI P, YANG P F, KOMATSU S, QI L W. Food Chem., 2018, 249: 1-7.
-
[16]
LI Y L, LI R H, YE Y F, MU C K, WANG C L. J. Appl. Anim. Res., 2019, 47(1):314-321.
-
[17]
TENORI L, SANTUCCI C, MEONI G, MORROCCHI V, MATTEUCCI G, LUCHINAT C. Food Res. Int., 2018, 113:131-139.
-
[18]
MAN K Y, CHAN C O, TANG H H, DONG N P, CAPOZZI F, WONG K H, KWOK K W H, CHAN H M, MOK D K W. Food Chem., 2021, 338:127847.
-
[19]
LIU H Y, GUO X Q, ZHAO Q Y, QIN Y C, ZHANG J M. Food Chem., 2020, 309:125765.
-
[20]
DA COSTA E, RICARDO F, MELO T, MAMEDE R, ABREU M H, DOMINGUES P, DOMINGUES M R, CALADO R. Biomolecules, 2020, 10(3):489.
-
[21]
BENKTANDER J, VENKATAKRISHNAN V, PADRA J T, SUNDH H, SUNDELL K, MURUGAN A V M, MAYNARD B, LINDEN S. Mol. Cell. Proteomics, 2019, 18(6):1183-1196.
-
[22]
WU N, CHEN S G, YE X Q, LI G Y, YIN L A, XUE C H. J. Ocean Univ. China, 2014, 13(5):871-876.
-
[23]
BÖHME K, CALO-MATA P, BARROS-VELáZQUEZ J, ORTEA I. TrAC-Trends Anal. Chem., 2019, 110: 221-232.
-
[24]
SERVICE R F. Science, 2000, 287(5461):2136-2138
-
[25]
JIANG B X, HU L P, ZHANG X M, ZHANG H W, ZHANG F, CHEN L P, LI Z J, ZHAO X, XUE C H, JIANG X M. Food Chem., 2021, 344:128575.
-
[26]
SHA X M, WANG G Y, LI X, ZHANG L Z, TU Z C. Food Hydrocolloids, 2020, 101:105476.
-
[27]
ZHU X C, CHEN Y P, SUBRAMANIAN R. Anal. Chem., 2014, 86(2):1202-1209.
-
[28]
CHEN M X, ZHANG Y J, FERNIE A R, LIU Y G, ZHU F Y. Trends Biotechnol., 2021, 39(5):433-437.
-
[29]
LIN Q F, TAN H T, CHUNG M C M. Mass Spectrometry of Proteins. Methods Mol. Biol. New York:Humana Press, 2019, 1977:3-15.
-
[30]
WISNIEWSKI J R, ZOUGMAN A, NAGARAJ N, MANN M. Nat Methods, 2009, 6(5):359-360.
-
[31]
ZHANG H W, ZHANG X M, ZHAO X, XU J, LIN C, JING P, HU L P, ZHAO S, WANG X S, LI B F. Food Chem., 2019, 274:592-602.
-
[32]
TRIBA M N, LE MOYEC L, AMATHIEU R, GOOSSENS C, BOUCHEMAL N, NAHON P, RUTLEDGE D N, SAVARIN P. Mol. BioSyst., 2015, 11(1):13-19.
-
[1]
-
-
-
[1]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[2]
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
-
[3]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[4]
Yujing Chen , Hongqun Ouyang , Dan Zhao , Yanyan Chu , Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120
-
[5]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[6]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[7]
Xianfei Chen , Wentao Zhang , Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112
-
[8]
Jia Huo , Jia Li , Yongjun Li , Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075
-
[9]
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
-
[10]
Jiantao Zai , Hongjin Chen , Xiao Wei , Li Zhang , Li Ma , Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023
-
[11]
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
-
[12]
Weitai Wu , Laiying Zhang , Yuan Chun , Liang Qiao , Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031
-
[13]
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
-
[14]
Laiying Zhang , Weitai Wu , Yiru Wang , Shunliu Deng , Zhaobin Chen , Jiajia Chen , Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032
-
[15]
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
-
[16]
Houjin Li , Lin Wu , Xingwen Sun , Yuan Zheng , Zhanxiang Liu , Shuanglian Cai , Ying Xiong , Guangao Yu , Qingwen Liu , Jie Han , Xin Du , Chengshan Yuan , Qihan Zhang , Jianrong Zhang , Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100
-
[17]
Yi-Lin Xie , Jian-Ji Zhong , Qing-Xiao Tong , Jing-Xin Jian . Exploring “Magic Teaching” as a Means to Integrate Organic Chemistry Experiments with the “Industry-University-Research” Model. University Chemistry, 2025, 40(5): 252-260. doi: 10.12461/PKU.DXHX202407024
-
[18]
Yue-Zhou Zhu , Kun Wang , Shi-Sheng Zheng , Hong-Jia Wang , Jin-Chao Dong , Jian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040
-
[19]
Linghua Chen . 基于双联动“三学”模式的食品专业分析化学教学改革. University Chemistry, 2025, 40(8): 78-91. doi: 10.12461/PKU.DXHX202409095
-
[20]
Shangwen Luo , Jianguo Fang , Yanlong Yang , Shihui Dong . 化学生物学课程双语教学实践与探索. University Chemistry, 2025, 40(8): 124-129. doi: 10.12461/PKU.DXHX202410096
-
[1]
Metrics
- PDF Downloads(10)
- Abstract views(705)
- HTML views(61)
Login In
DownLoad: