Citation: CAI Xian-Hong,  SUN Qiang,  WU Qian,  YE Hao-Nan,  WU Qin-Fang,  OU Wen-Hui,  CHEN Jin-Can,  CHEN Lan-Mei. Screening of Virginiamycin M1 Aptamer Based on Capillary Electrophoresis-Systematic Evolution of Ligands by Exponential Enrichment and Application[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 728-738. doi: 10.19756/j.issn.0253-3820.210827 shu

Screening of Virginiamycin M1 Aptamer Based on Capillary Electrophoresis-Systematic Evolution of Ligands by Exponential Enrichment and Application

  • Corresponding author: CHEN Jin-Can,  CHEN Lan-Mei, 
  • Received Date: 4 November 2021
    Revised Date: 12 February 2022

    Fund Project: Supported by the Fund of Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) (No.ZJW-2019-007), the Science and Technology Program of Zhanjiang (No.2021A05037) and the University Student Innovation Experiment Program (No.202110571028).

  • Capillary electrophoresis (CE) has been considered as an efficient method for aptamer screening due to its high separation efficiency, less sample consumption and low screening cost. In this study, an aptamer screening method was established for virginiamycin M1 (VGM-M1) based on capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX). The initial ssDNA library was mixed and incubated with VGM-M1, and the conjugate was separated and collected by capillary electrophoresis-ultraviolet detection (CE-UV). The next sub-library ssDNA was obtained by polymerase chain reaction (PCR) amplification and single stranded DNA (ssDNA) preparation. After four rounds of screening, the first 10 candidate aptamer sequences with high enrichment were obtained, and the first 4 candidate aptamer sequences with the highest enrichment were selected for affinity and specificity evaluation. The VGM-M1 aptamer Seq 1 with the highest affinity and the strongest specificity was obtained, and its equilibrium constant value (Kd) was 49 nmol/L. The aptamer Seq 1 was modified to obtain optimized candidate aptamer sequences and their affinity and specificity were evaluated. The results showed that the modified aptamer Seq 1-1 had the highest affinity and specificity, and its Kd was as low as 45 nmol/L. Competitive enzyme-linked aptamer visual detection method was used to detect VGM-M1, and the minimum detection limit was as low as 51 ng/mL, which was far below the maximum residue limit of 100 ng/mL for VGM-M1. Further standard addition and recovery experiments were carried out on VGM-M1 in milk, and the recoveries reached 97.8%.8-103.2%. The above research results showed that the aptamer Seq 1-1 screened by CE-SELEX could specifically recognize VGM-M1 and could be applied to the detection of VGM-M1 in real samples.
  • 加载中
    1. [1]

      TAO Y F, XIE S Y, ZHU Y, CHEN D M, PAN Y H, WANG X, LIU Z L, HUANG L L, PENG D P, YUAN Z H. J. Chromatogr. Sci., 2018, 56(3):285-291.

    2. [2]

      NEUMANN A P, SUEN G. J. Appl. Microbiol., 2015, 119(6):1515-1526.

    3. [3]

      SALINAS C J, BARRERAS A, PLASCENCIA A, MONTANO M F, NAVARRETE J D, TORRENTERA N, ZINN R A. J. Anim. Sci., 2016, 94(10):4276-4286.

    4. [4]

    5. [5]

    6. [6]

    7. [7]

      MURIELLE G, AMANDINE R, SOPHIE B, ERIC V, DOMINIQUE H. Food Addit. Contam., Part A, 2021, 38(9):1481-1494.

    8. [8]

    9. [9]

      SONG X Q, HUANG Q W, ZHANG Y X, ZHANG M Y, XIE J, HE L M. J. Pharm. Biomed. Anal., 2019, 170(5):234-242.

    10. [10]

      XU X X, WU X L, KUANG H, SONG S S. Food Agric. Immunol., 2020, 31(1):764-777.

    11. [11]

      DELANAYE P, CAVALIER E, CRISTOL J P, DELANGHE J R. J. Nephrol., 2014, 27(5):467-475.

    12. [12]

      KWON Y S, RASTON N H A, GU M B. Chem. Commun., 2014, 50(1):40-42.

    13. [13]

      NGUYEN N V, YANG C H, LIU C J, KUO C H, WU D C, JEN C P. Biosensors, 2018, 8(4):98-121.

    14. [14]

      CHEN A, YANG S M. Biosens. Bioelectron., 2015, 71(15):230-242.

    15. [15]

      TOMBELLI S, MINUNNI M, MASCINI M. Biomol. Eng., 2007, 24(2):191-200.

    16. [16]

      HAO X K, YEH P Y, QIN Y B, JIANG Y Q, QIU Z Y, LI S Y, LE T, CAO X D. Anal. Chim. Acta, 2019, 1056:96-107.

    17. [17]

      ABBASPOUR A, NOROUZ-SARVESTANI F, NOORI A, SOLTANI N. Biosens. Bioelectron., 2015, 68:149-155.

    18. [18]

      WILLIAMS R M, CRIHFIELD C L, GATTU S, HOLLAND L A, SOOTER L J. Int. J. Mol. Sci., 2014, 15(8):14332-14347.

    19. [19]

      TOH S Y, CITARTAN M, GOPINATH S C, TANG T H. Biosens. Bioelectron., 2015, 64:392-403.

    20. [20]

    21. [21]

      KOMAROVA N, KUZNETSOV A. Molecules, 2019, 24(19):1-23.

    22. [22]

      FLETT F, INTERTHAL H. Method. Mol. Biol. (N.Y.), 2013, 1054:173-185.

    23. [23]

      BAYAT P, NOSRATI R, ALIBOLANDI M, RAFATPANAH H, ABNOUS K, KHEDRI M, RAMEZANI M. Biochimie, 2018, 154:132-155.

    24. [24]

      CHEN H W, MEDLEY C D, SEFAH K, SHANGGUAN D H, TANG Z W, MENG L, SMITH J E, TAN W H. ChemMedChem, 2008, 3(6):991-1001.

    25. [25]

      TIAN Y, WANG Y, SHENG Z, LI T T, LI X. Anal. Biochem., 2016, 513(15):87-92.

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    3. [3]

      Yunyan LiZimin CaiZhicheng WangSifeng ZhuWendian LiuCheng Wang . Construction of biomimetic hybrid nanovesicles based on M1 macrophage-derived exosomes for therapy of cancer. Chinese Chemical Letters, 2025, 36(4): 109942-. doi: 10.1016/j.cclet.2024.109942

    4. [4]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    5. [5]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    6. [6]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    7. [7]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    8. [8]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    9. [9]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    10. [10]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    11. [11]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    20. [20]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

Metrics
  • PDF Downloads(9)
  • Abstract views(913)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return