Citation:
CAI Dong-Ming, OUYANG Jie, DING Jin-Jian, LIN Min, ZHANG Wei-Wei, LI Min-Jie, GUO Liang-Hong. Research Progress on Identification and Toxic Effects of Antibiotics Disinfection By-products[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(3): 327-340.
doi:
10.19756/j.issn.0253-3820.210811
-
Due to extensive use and persistent discharge, the environmental levels of antibiotics have been increasing over time. The concentrations of some antibiotics in surface water have reached 300 ng/L, while those in drinking water sources have exceeded 200 ng/L. During disinfection process of drinking water, the antibiotics react with the disinfectants to produce a variety of by-products, some of which are carcinogenic or acutely toxic. These antibiotic disinfection by-products (DBPs) pose direct threat to human health, and thus become the frontier research topic in environmental health science. Based on the studies mostly published in the recent years, this review summarized the analytical methods of DBPs from five major categories of antibiotics (Chloramphenicols, sulfanilamides, fluoroquinolones, tetracyclines, macrolides) including sample pretreatment, chromatography separation and spectroscopic and mass spectrometry detection. Identified DBPs under specific disinfection conditions were then described according to the category of the antibiotics. Furthermore, common toxicity test methods including luminescent bacteria inhibition were introduced, and the test results of some antibiotic DBPs were described. A variety of antibiotic DBPs were identified in previous studies, and some of them were shown to be more toxic than their precursors and thus deserved further investigation.
-
-
-
[1]
https://www.chyxx.com/industry/202107/961106.html.
-
[2]
VAN BOECKELA T P, BROWERB C, GILBERT M, GRENFELL B T, LEVIN S A, ROBINSON T P, TEILLANT A, LAXMINARAYAN R. Proc. Natl. Acad. Sci. U.S.A., 2015, 112(18):5649-5654.
-
[3]
KUMMERER K, HENNINGER A. Clin. Microbiol. Infect., 2003, 9(12):1203-1214.
-
[4]
ZHOU L J, YING G G, LIU S, ZHANG R Q, LAI H J, CHEN Z F, PAN C G. Sci. Total Environ., 2013, 444:183-195.
-
[5]
-
[6]
-
[7]
-
[8]
DING S K, CHU W H. Trends Environ. Anal. Chem., 2017, 14:19-27.
-
[9]
CHU W H, KRASNER S W, GAO N Y, TEMPLETON M R, YIN D Q. Environ. Sci. Technol., 2016, 50(1):388-396.
-
[10]
GAFFNEY V D, CARDOSO V V, BENOLIEL M J, ALMEIDA C M M. J. Environ. Manage., 2016, 166:466-477.
-
[11]
El NAJJAR N H, DEBORDE M, JOURNEL R, LEITNER N K V. Water Res., 2013, 47(1):121-129.
-
[12]
LEAVEY-ROBACK S L, KRASNER S W, SUFFET I H. Chemosphere, 2016, 164:330-338.
-
[13]
ZHANG Y Y, PAN Z H, RONG C, SHAO Y A, WANG Y H, YU K F. Sep. Purif. Technol., 2019, 212:528-535.
-
[14]
SHEN R Q, ANDREWS S A. Water Res., 2011, 45(2):944-952.
-
[15]
DONG H Y, QIANG Z M, HU J, QU J H. Water Res., 2017, 121:178-185.
-
[16]
-
[17]
YE Z X, SHAO K L, HUANG H, YANG X. Chemosphere, 2021, 270:128628.
-
[18]
LI S, MA J P, WU G G, LI J H, WANG X Y, CHEN L X. J. Hazard. Mater., 2021, 424:127687.
-
[19]
ZHANG Y M, CHU W H, XU T, YIN D Q, XU B, LI P, AN N. Chem. Eng. J., 2017, 317:112-118.
-
[20]
CHU W H, CHU T F, BOND T, DU E D, GUO Y Q, GAO N Y. Water Res., 2016, 93:48-55.
-
[21]
WANG M, HELBLING D E. Water Res., 2016, 102:241-251.
-
[22]
KHANA M H, BAEA H, JUNG J Y. J. Hazard. Mater., 2010, 181(1-3):659-665.
-
[23]
LI C, LUO F, DUAN H J, DONG F L, CHEN X Y, FENG M B, ZHANG Z R, CIZMAS L, SHARMA V K. Sep. Purif. Technol., 2019, 211:564-570.
-
[24]
RODAYAN A, ROY R, YARGEAU V. J. Hazard. Mater., 2010, 177(1-3):237-243.
-
[25]
WANG H L, SHI W Y, MA D F, SHANG Y A, WANG Y, GAO B Y. Chem. Eng. J., 2020, 392:123701.
-
[26]
-
[27]
DE WITTE B, VAN LANGENHOVE H, HEMELSOET K, DEMEESTERE K, DE WISPELAERE P, VAN SPEYBROECK V, DEWULF J. Chemosphere, 2009, 76(5):683-689.
-
[28]
DEWITTE B, DEWULF J, DEMEESTERE K, DE VYVEREN V V, DE WISPELAERE P, VAN LANGENHOVE H. Environ. Sci. Technol., 2008, 42(13):4889-4895.
-
[29]
ZHOU S Q, SHAO Y S, GAO N Y, ZHU S M, MA Y, DENG J. Ecotoxicol. Environ. Saf., 2014, 107:33-35.
-
[30]
SHAO K L, YE Z X, HUANGA H, YANG X. Water Res., 2020, 186:116313.
-
[31]
JAEN-GIL A, FARRE M J, SÁNCHEZ-MELSIÓ A, SERRA-COMPTE A, BARCELÓ D, RODRÍGUEZ-MOZAZ S. Environ. Sci. Technol., 2020, 54(14):9062-9073.
-
[32]
LUIZ D B, GENENA A K, VIRMOND E, JOSE H J, MOREIRA R F P M, GEBHARDT W, SCHRÖDER H F. Water Environ. Res., 2010, 82(9):797-805.
-
[33]
YANG Y J, SHI J C, YANG Y, YIN J, ZHANG J, SHAO B. J. Environ. Sci., 2019, 76:48-56.
-
[34]
WANG G Q, SHI W Y, MA D F, GAO B Y. Sci. Total Environ., 2020, 731:138755.
-
[35]
MIYASHIRO T, RUBY E G. Mol. Microbiol., 2012, 84(5):795-806.
-
[36]
ABBASA M, ADIL M, EHTISHAM-UL-HAQUE S, MUNIR B, YAMMEN M, GHAFFAR A, SHAR G A, TAHIR M A, IQBAL M. Sci. Total Environ., 2018, 626:1295-1309.
-
[37]
ZHANG T Q, HE G L, DONG F L, ZHANG Q Z, HUANG Y. Sci. Total Environ., 2019, 676:31-39.
-
[38]
MÉDICE R M, AFONSO R G D F, ALMEIDA M L B, DE AQUINO S F, LIBÂNIO M. Environ. Sci. Pollut. Res., 2020, 28(4):3828-3836.
-
[39]
MOE B, GABOS S, LI X F. Anal. Chim. Acta, 2013, 789:83-90.
-
[40]
FENG Y X, GUO Q Z, SHAO B. Ecotoxicol. Environ. Saf., 2019, 182:109415.
-
[41]
ABELLÁN M N, GEBHARDT W, SCHRÖDER H F. Water Sci. Technol., 2008, 58(9):1803-1812.
-
[42]
CHEN B Y, ZHANG T, BOND T, GAN Y Q. J. Hazard. Mater., 2015, 299:260-279.
-
[43]
GUO Q Z, DU Z X, SHAO B. J. Hazard. Mater., 2018, 359:31-39.
-
[44]
FU W J, LI B, YANG J Q, YI H B, CHAI L Y, LI X Y. Chem. Eng. J., 2018, 331:785-793.
-
[45]
LI M, WEI D B, DU Y G. J. Environ. Sci., 2014, 26(9):1837-1842.
-
[46]
HE G L, ZHANG T Q, ZHENG F F, LI C, ZHANG Q Z, DONG F L, HUANG Y. Chem. Eng. J., 2019, 374:1191-1203.
-
[47]
YIN K, DENG L, LUO J M, CRITTENDEN J, LIU C B, WEI Y F, WANG L L. Chem. Eng. J., 2018, 351:867-877.
-
[48]
CAI A H, DENG J, XU M Y, ZHU T X, ZHOU S Q, LI J, WANG G F, LI X Y. Chem. Eng. J., 2020, 395:125090.
-
[49]
DONG H Y, CUTHBERTSON A A, RICHARDSON S D. Environ. Sci. Technol., 2020, 54(3):1290-1292.
-
[1]
-
-
-
[1]
Jijun Sun , Qianlang Wang , Qian Chen , Quanqin Zhao , Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206
-
[2]
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
-
[3]
Yongxin LIU , Xingchen LI , Hongjia LIU , Danni LI , Tao ZHANG , Xi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169
-
[4]
Peiling Li , Qing Feng , Hongling Yuan , Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022
-
[5]
Ziheng Zhuang , Xiao Xu , Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040
-
[6]
Chengyi Xiao , Xiaoli Sun , Chen Zhang , Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069
-
[7]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[8]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
-
[9]
Deyun Ma , Fenglan Liang , Qingquan Xue , Yanping Liu , Chunqiang Zhuang , Shijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190
-
[10]
Chao Liu , Huan Yu , Jiaming Li , Xi Yu , Zhuangzhi Yu , Yuxi Song , Feng Zhang , Qinfang Zhang , Zhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075
-
[11]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013
-
[12]
Wen Shi , Jiuxing Jiang . 化学中的数学方法课程建设探索. University Chemistry, 2025, 40(6): 48-53. doi: 10.12461/PKU.DXHX202408088
-
[13]
Zhentong Zhu , Peiyao Du , Chaoqin Zeng , Rui Zhou , Xiaoyan He , Bingzhang Lu , Xiaoquan Lu . Discussion on Teaching Methods for Bilingual Courses in Instrumental Analysis for Chemistry Majors. University Chemistry, 2025, 40(10): 39-45. doi: 10.12461/PKU.DXHX202411014
-
[14]
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035
-
[15]
Feng Liang , Desheng Li , Yuting Jiang , Jiaxin Dong , Dongcheng Liu , Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009
-
[16]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[17]
Sifang Zhang , Yanli Tan , Yu Tao , Jiaoyan Zhao , Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067
-
[18]
Yuyang Xu , Ruying Yang , Yanzhe Zhang , Yandong Liu , Keyi Li , Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064
-
[19]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[20]
Xingyuan Lu , Yutao Yao , Junjing Gu , Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074
-
[1]
Metrics
- PDF Downloads(21)
- Abstract views(1499)
- HTML views(403)
Login In
DownLoad: