Citation: LI Yu-Wen,  ZHAO Zhu-Yu,  CAO Fang,  ZHOU Yu-Chen,  ZHOU Wei-Jing,  YANG Xiao-Ying,  YU Hao-Ran,  ZHANG Yan-Lin. Passive Sampling of Atmospheric Ozone and Determination of Δ17O[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 801-809. doi: 10.19756/j.issn.0253-3820.210798 shu

Passive Sampling of Atmospheric Ozone and Determination of Δ17O

  • Corresponding author: CAO Fang,  ZHANG Yan-Lin, 
  • Received Date: 19 October 2021
    Revised Date: 15 January 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.41977305, 41977185), the Jiangsu Innovation & Entrepreneurship Team (2018), the Provincial Natural Science Foundation of Jiangsu Province, China (No.812 BK20180040) and the "333 Talent Project" of Jiangsu Province, China (No.RRA2020068).

  • As an air pollutant, tropospheric ozone (O3) is also a precursor of atmospheric nitrate. Its oxygen isotope abnormal (Δ17O) can be used to trace atmospheric nitrate and other atmospheric chemical processes.This research was based on the passive sampling method, and the O3 in the atmosphere was collected using a passive sampler coated with nitrite. The sampling period was one week. The atmospheric O3 was converted into nitrate on the adsorption filter membrane, the remaining nitrite was removed by adding a certain concentration of sulfamic acid, and then the corresponding concentration of sodium hydroxide was added to neutralize the pH of the solution. Nitrate was converted into N2O by the denitrifying bacteria method, and the produced N2O entered the gold tube at 800℃ to be pyrolyzed into N2 and O2. The δ18O and δ17O values of oxygen were measured and converted to Δ17O (Δ17O=δ17O-0.52δ18O). With the help of international samples with known Δ17O values (USGS34 and USGS35), a Δ17O standard curve was established to convert the Δ17O of real nitrates, and finally converted to the value of Δ17O in atmospheric ozone. The research results showed that adding 0.5 mL of sulfamic acid (1 mol/L) to the reaction and shaking for 15 min could completely remove nitrite without affecting the isotope value of nitrate. The use of 99.999% sodium nitrite could better reduce the blank effect caused by nitrate in the drug, thereby reducing the impact on the isotope value. The content of nitrate generated by O3 conversion should be higher than 6 μg of NO3-N, and the standard deviation of Δ17O measured at this time was 0.29‰ (n=3). This method was used to analyze the passively collected O3 samples in Nanjing spring, and the Δ17O value of O3was 26.59‰±1.41‰, which was consistent with the actively collected value and similar to previous research results. Passive sampling method had many advantages such as low price, good portability and low energy consumption. Its isotope value measurement results showed that the passive sampling was a highly feasible sampling method and could be used in the study of atmospheric O3 oxygen isotope abnormal values.
  • 加载中
    1. [1]

      ALEXANDER B, SHERWEN T, HOLMES C D, FISHER J A, CHEN Q, EVANS M J, KASIBHATLA P. Atmos. Chem. Phys., 2020, 20(6):3859-3877.

    2. [2]

      VICARS W C, BHATTACHARYA S K, ERBLAND J, SAVARINO J. Rapid Commun. Mass Spectrom., 2012, 26(10):1219-1231.

    3. [3]

    4. [4]

    5. [5]

      HE P, XIE Z, CHI X Y, YU X W. Atmos. Chem. Phys., 2018, 18(19):14465-14476.

    6. [6]

      ZONG Z, WANG X P, TIAN C G, CHEN Y J, FANG Y T, ZHANG F, LI C, SUN J Z, LI J, ZHANG G. Environ. Sci. Technol., 2017, 51(11):5923-5931.

    7. [7]

    8. [8]

      ISHINO S, HATTORI S, SAVARINO J, JOURDAIN B, PREUNKERT S, LEGRAND M, CAILLON N, BARBERO A, KURIBAYASHI K, YOSHIDA N. Atmos. Chem. Phys., 2017, 17(5):3713-3727.

    9. [9]

      SAVARINO J, BHATTACHARYA S K, MORIN S, BARONI M. J. Chem. Phys., 2008, 128(19):194303.

    10. [10]

      JOHNSTON J C, THIEMENS M H. J. Geophys. Res.:Atmos., 1997, 102(D21):25395-25404.

    11. [11]

      KRANKOWSKY D, BARTECKI F, KLEES G G, MAUERSBERGER K, SCHELLENBACH K, STEHR J. Geophys. Res. Lett., 1995, 22(13):1713-1716.

    12. [12]

      BAO H, THIEMENS M H, FARQUHAR J, CAMPBELL D A, LEE C C, HEINE K, LOOPE D B. Nature, 2000, 406(6792):176-178.

    13. [13]

      BÖHLKE J K, ERICKSEN G E, REVESZ K. Chem. Geol., 1997, 136(1-2):135-152.

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

      CARMICHAEL G R, FERM M, THONGBOONCHOO N, WOO J H, CHAN L Y, MURANO K, VIET P H, MOSSBERG C, BALA R, BOONJAWAT J, UPATUM P, MOHAN M, ADHIKARY S P, SHRESTHA A B, PIENAAR J J, BRUNKE E B, CHEN T, JIE T, DING G, PENG L C, DHIHARTO S, HARJANTO H, JOSE A M, KIMANI W, KIROUANE A, LACAUX J P, RICHARD S, BARTUREN O, CERDA J C, ATHAYDE A, TAVARES T, COTRINA J S, BILICI E. Atmos. Environ., 2003, 37(9-10):1293-1308.

    19. [19]

      SWARTZ J S, VAN ZYL P G, BEUKES J P, LABUSCHAGNE C, BRUNKE E G, PORTAFAIX T, GALY-LACAUX C, PIENAARJ J. Atmos. Environ., 2020, 222:117128.

    20. [20]

      ALBERTIN S, SAVARINO J, BEKKI S, BARBERO A, CAILLON N. Atmos. Chem. Phys., 2021, 21(13):10477-10497.

    21. [21]

      VICARS W C, SAVARINO J. Geochim. Cosmochim. Acta, 2014, 135:270-287.

    22. [22]

      SAVARD M M, COLE A S, VET R, SMIRNOFF A. Atmos. Chem. Phys., 2018, 18(14):10373-10389.

    23. [23]

      GRANGER J, SIGMAN D M. Rapid Commun. Mass Spectrom., 2009, 23(23):3753-3762.

  • 加载中
    1. [1]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    2. [2]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    3. [3]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    4. [4]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    7. [7]

      Jiahong WANGZekun XUTianjiao LUJinming HUANG . Performance of N, Mn doped semi-coke activated carbon catalyzed ozone oxidation for the degradation of tetracycline hydrochloride in water. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2549-2560. doi: 10.11862/CJIC.20250120

    8. [8]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    9. [9]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    10. [10]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

    11. [11]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    12. [12]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    13. [13]

      Zhongbin Pan Shijie Huang Yunjie Luo Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040

    14. [14]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    15. [15]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

    16. [16]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    17. [17]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    18. [18]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

Metrics
  • PDF Downloads(9)
  • Abstract views(886)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return