Citation: WEI Yun,  XIA Jing-Jing,  XU Wei-Xin,  CHEN Yue-Yao,  MAO Xin-Ran,  XIONG Yan-Mei,  MIN Shun-Geng. Quantitative Study on Prohibited Addition of Chlorfenapyr in Bacillus Thuringiensis Formulations by Infrared Spectroscopy[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(3): 482-490. doi: 10.19756/j.issn.0253-3820.210794 shu

Quantitative Study on Prohibited Addition of Chlorfenapyr in Bacillus Thuringiensis Formulations by Infrared Spectroscopy

  • Corresponding author: XIONG Yan-Mei,  MIN Shun-Geng, 
  • Received Date: 15 October 2021
    Revised Date: 28 December 2021

  • A method for rapid determination of chlorfenapyr in Bacillus thuringiensis formulations with prohibited additions using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) combined with partial least squares (PLS) analysis was developed. Three Bacillus thuringiensis formulations from different sources were added with different masses of 97.00% (m/m) chlorfenapyr prodrug to prepare 153 mixed samples with chlorfenapyr concentrations ranging from 0.00% to 5.00%. Three pretreatment methods (Savitzky-Golay smoothing (S-G), standard normal variation (SNV) and multivariate scattering correction (MSC)) and five variable selection algorithms (interval partial least-squares (iPLS), moving window partial least-squares (MWPLS), elimination of uninformative variables (UVE), competitive adaptive reweighted sampling (CARS), and the bootstrapping soft shrinkage (BOSS)) were employed to investigate the effects of different pretreatment methods and variable selection methods on the model results. Among them, the MSC pretreatment method combined with the BOSS algorithm obtained the optimal model results, and with this method, RMSECV=0.0017, Rcv2=0.9859, RMSEP=0.0016, and Rpre2=0.9868. For samples with chlorfenapyr concentration ranging from 0.50% to 5.00%, the average relative error of external test sample prediction was 0.0540, and the variables selected by the BOSS algorithm were mainly concentrated in the absorption region of the characteristic peak of chlorfenapyr. This method not only had excellent modeling effect, but also showed good chemical interpretability, and could be applied to the rapid detection of chlorfenapyr in Bacillus thuringiensis formulations with prohibited additions.
  • 加载中
    1. [1]

      ZHAO Y, WANG Q, WANG Y, ZHANG Z, WEI Y, LIU F, ZHOU C, MU W. J. Agric. Food Chem., 2017,65(29):5908-5915.

    2. [2]

      GHANI S B A, ABDALLAH O I. Food Chem., 2016, 194:516-521.

    3. [3]

      ULLAH S, SHAH R M, SHAD S A. Pestic. Biochem. Physiol., 2016, 133:91-96.

    4. [4]

    5. [5]

      SANAHUJA G, BANAKAR R, TWYMAN R M, CAPELL T, CHRISTOU P. Plant Biotechnol. J., 2011, 9(3):283-300.

    6. [6]

      GHELARDI E, CELANDRONI F, SALVETTI S, FISCARELLI E, SENESI S. Microbes Infect., 2007, 9(5):591-598.

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

      GARLITO B, IBANEZ M, PORTOLES T, SERRANO R, AMLUND H, LUNDEBYE A K, SANDEN M, BERNTSSEN M H G, HERNANDEZ F. Anal. Bioanal. Chem., 2019, 411(27):7281-7291.

    12. [12]

      FENG C, XU Q, QIU X, JIN Y, JI J, LIN Y, LE S, WANG G, LU D. Food Chem., 2020, 320:126576.

    13. [13]

      DUTTA A, HINGMIRE S, BANERJEE K. J. AOAC Int., 2020, 103(6):1486-1497.

    14. [14]

      GOLGE O. Food Anal. Method., 2021, 14(7):1432-1437.

    15. [15]

    16. [16]

    17. [17]

    18. [18]

      ZIEGLER J U, LEITENBERGER M, LONGIN C, Friedrich H, WüRSCHUM T, CARLE R, SCHWEIGGERT R M. J. Food Compos. Anal., 2016, 51:30-36.

    19. [19]

      JOHNSON J B. J. Stored Prod. Res., 2020, 86:101558.

    20. [20]

      LI Q, XIE J, ZHANG J, YAN H, XIONG Y, LIU W, MIN S. Infrared Phys. Technol., 2020, 105:103191.

    21. [21]

      LI Q, HUANG Y, ZHANG J, MIN S. Spectrochim. Acta, Part A, 2021, 247:119119.

    22. [22]

      YAN H, SONG X, TIAN K, CHEN Y, XIONG Y, MIN S. Spectrochim. Acta, Part A, 2018, 191:296-302.

    23. [23]

    24. [24]

      LI Q, HUANG Y, SONG X, ZHANG J, MIN S. Pest Manag. Sci., 2019, 75(6):1743-1749.

    25. [25]

    26. [26]

  • 加载中
    1. [1]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    2. [2]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    3. [3]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    4. [4]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

    5. [5]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    6. [6]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    11. [11]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    16. [16]

      Yidan Jing Xiaomin Zhang Nan Xu . Design and Practice of Chemical Science Popularization Experiments Based on the Concept of Controlling Variables: Taking the “Recovery of Silver from Silver-Containing Wastewater” Science Popularization Project as an Example. University Chemistry, 2025, 40(4): 346-352. doi: 10.12461/PKU.DXHX202405146

    17. [17]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    18. [18]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

Metrics
  • PDF Downloads(5)
  • Abstract views(1023)
  • HTML views(174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return