Citation: FU Xin,  ZOU Ting,  ZHANG He,  ZHANG Pei-Rou,  JIANG Xu-Chun. Ultrasensitive Colorimetric Sensor for Detection of Thrombin Based on Loop Mediated Isothermal Signal Amplification Triggered by Aptamer Sandwich-Mediated Enzymatic Digestion[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1022-1031. doi: 10.19756/j.issn.0253-3820.210793 shu

Ultrasensitive Colorimetric Sensor for Detection of Thrombin Based on Loop Mediated Isothermal Signal Amplification Triggered by Aptamer Sandwich-Mediated Enzymatic Digestion

  • Corresponding author: ZHANG He, mzhang_he@126.com
  • Received Date: 14 October 2021
    Revised Date: 20 December 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21005067) and the Natural Science Foundation of Hunan Province, China (No.2019JJ40055).

  • An ultrasensitive colorimetric sensor for detection of thrombin was designed based on loop mediated isothermal signal amplification (LAMP) triggered by aptamer sandwich-mediated enzymatic digestion. In the presence of thrombin, aptamer capable of recognizing thrombin heparin site and fibrinogen site was used to recognize thrombin and construct a sandwich structure. The Nb.BsrDI nicking endonuclease could recognize and cleave this complementary sequence to start-up loop mediated isothermal amplification. G-quadruplex-hemin DNAzyme could catalyze the oxidation of ABTS to ABTS·+ in the presence of H2O2, and the color changed to green. Under the optimal experimental conditions, the linear detection range of this method for thrombin was 0.01-1.0 ag/mL, the detection limit (3σ) was 0.008 ag/mL, and the regression equation was ΔA420 nm=0.187Cthrombin+0.171 (R2=0.991). When there were a large number of other interfering proteins in the serum sample, the sensor still had a high selectivity to thrombin. When this method was applied to the detection of thrombin content in serum samples, the recoveries were 96.1%-103.2%. This method innovatively integrated aptamer-based sandwich assay, loop-mediated isothermal amplification technology, and G-quadruplex-hemin DNAzyme enzymatic signal amplification technology that caused the ultrasensitive detection of thrombin. The method showed many advantages such as lower cost, simple operation and good stability, and could be used for highly sensitive clinical detection of thrombin in human serum.
  • 加载中
    1. [1]

      PEACOCK R B, MCGRANN T, TONELLI M, KOMIVES E A. Sci. Rep., 2021, 11(1):9354.

    2. [2]

    3. [3]

      SAPSFORD K E, BERTI L, MEDINTZ I L. Angew. Chem., Int. Ed., 2006, 45(28):4562-4589.

    4. [4]

      HERNANDEZ-RODRIGUEZ N A, CAMBREY A D, CHAMBERS R C, GRAY A J, MCANULTY R J, LAURENT G J, HARRISON N K, SOUTHCOTT A M, DUBOIS R M, BLACK C M. Lancet, 1995, 346(8982):1071-1073.

    5. [5]

      KITAMOTO Y, IMAMURA T, FUKUI H, TOMITA K. Kidney Int., 1998, 54:1767-1768.

    6. [6]

      NIU S, QU L, ZHANG Q, LIN J. Anal. Biochem., 2012, 421(2):362-367.

    7. [7]

      MANN K G. J. Thromb. Haemost., 2006, 4(1):58-59.

    8. [8]

      RAND M D, LOCK J B, VAN'T VEER C, GAFFNEY D P, MANN K G. Blood, 1996, 88(9):3432-3445.

    9. [9]

      OBUBUAFO A, BALAMURUGAN S, SHADPOUR H, SPIVAK D, MCCARLEY R L, SOPER S A. Electrophoresis, 2008, 29(16):3436-3445.

    10. [10]

      CHOI J H, CHEN K H, STRANO M S. J. Am. Chem. Soc., 2006, 128(49):15584-15585.

    11. [11]

    12. [12]

      XU H, CUI H, YIN Z, WEI G, LIAO F, SHU Q, MA G, CHENG L, HONG N, XIONG J, FAN H. Bioelectrochemistry, 2020, 134:107522.

    13. [13]

      CHENG L, XU C, CUI H, LIAO F, HONG N, MA G, XIONG J, FAN H. Anal. Chim. Acta, 2020, 1111:1-7.

    14. [14]

      GUO W J, YANG X Y, WU Z, ZHANG Z L. J. Mater. Chem. B, 2020, 8(16):3574-3581.

    15. [15]

      ZHAO Q, LU X, YUAN C G, LI X F, LE X C. Anal. Chem., 2009, 81(17):7484-7489.

    16. [16]

    17. [17]

      SUN Y, ZHU X, LIU H, DAI Y, HAN R, GAO D, LUO C, WANG X, WEI Q. ACS Appl. Mater. Interfaces, 2020, 12(5):5569-5577.

    18. [18]

      YU N, WU J. Biosens. Bioelectron., 2019, 146:111726.

    19. [19]

      LI X, WU Y, NIU J, JIANG D, XIAO D, ZHOU C. J. Mater. Chem. A, 2019, 7(34):5161-5169.

    20. [20]

      LIU Y Z, JIANG X K, CAO W F, SUN J Y, GAO F. Sensors-Basel, 2018, 18(12):4289.

    21. [21]

      ZHAO Q, GAO J. Biosens. Bioelectron., 2015, 63:21-25.

    22. [22]

      BEZUNEH T T, FEREJA T H, ADDISU K S, LI H J, JIN Y D. Microchem. J., 2021, 160:105649.

    23. [23]

      LIN X, CHEN Q, LIU W, LI H, LIN J M. Biosens. Bioelectron., 2014, 56:71-76.

    24. [24]

      YIGIT M V, MAZUMDAR D, LU Y. Bioconjugate Chem., 2008, 19(2):412-417.

    25. [25]

      KIM K S, LEE H S, YANG J A, JO M H, HAHN S K. Nanotechnology, 2009, 20(23):235501.

    26. [26]

      WALKER G T, FRAISER M S, SCHRAM J L, LITTLE M C, NADEAU J G, MALINOWSKI D P. Nucleic Acids Res., 1992, 20(7):1691-1696.

    27. [27]

      LIZARDI P M, HUANG X H, ZHU Z R, BRAY-WARD P, THOMAS D C, WARD D C. Nat. Genet., 1998, 19(3):225-232.

    28. [28]

      NIMITPHAK T, KIATPATHOMCHAI W, FLEGEL T W. Nucleic Acids Res., 2000, 28(12):e63.

    29. [29]

      VINCENT M, XU Y, KONG H. EMBO Rep., 2004, 5(8):795-800.

    30. [30]

      LIN Q, XU P, LI J, YIN C, FENG J. Microb. Pathog., 2017, 109:183-188.

    31. [31]

      XUE T, MA Z, LIU F, DU W, AN C. BMC Pulm. Med., 2020, 20(1):70.

    32. [32]

      ULEP T H, DAY A S, SOSNOWSKI K, SHUMAKER A, YOON J Y. Sci. Rep., 2019, 9:9629.

    33. [33]

    34. [34]

      ZHOU W, GONG X, XIANG Y, YUAN R, CHAI Y. Biosens. Bioelectron., 2014, 55:220-224.

    35. [35]

    36. [36]

      LI Z, ZHAO J, WANG Z, DAI Z. Anal. Chim. Acta, 2018, 1008:90-95.

    37. [37]

      XU S Y, ZHU Z, ZHANG P, CHAN S H, SAMUELSON J C, XIAO J, INGALLS D, WILSON G G. Nucleic Acids Res., 2007, 35(14):4608-4618.

    38. [38]

      ZHANG H, HU X J, FU X. Biosens. Bioelectron., 2014, 57:22-29.

    39. [39]

    40. [40]

      ZHANG H, LEI Z X, FU X, DENG X C, WANG Q, GU D Y. Sens. Actuators, B, 2017, 246:896-903.

  • 加载中
    1. [1]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    2. [2]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    3. [3]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    4. [4]

      Zhexue Lu Ping Wu Huihui Li Libai Wen . 四“味”一体的无机及分析化学课程思政. University Chemistry, 2025, 40(6): 333-340. doi: 10.12461/PKU.DXHX202405196

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    7. [7]

      Tengyue ZHANGJingjing FENGZili LIANGJia′nan DAIJing MA . Optimization of C-doped BiVO4 performance for tetracycline degradation using response surface methodology-assisted orthogonal experiments. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2561-2574. doi: 10.11862/CJIC.20250104

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    10. [10]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    11. [11]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    14. [14]

      Jiahong WANGZekun XUTianjiao LUJinming HUANG . Performance of N, Mn doped semi-coke activated carbon catalyzed ozone oxidation for the degradation of tetracycline hydrochloride in water. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2549-2560. doi: 10.11862/CJIC.20250120

    15. [15]

      Rui LIUXinjun ZHOUTao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Shumin ZhangYaqi WangZelin WangLibo WangChangsheng AnDifa Xu . Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation. Acta Physico-Chimica Sinica, 2025, 41(11): 100136-0. doi: 10.1016/j.actphy.2025.100136

    20. [20]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

Metrics
  • PDF Downloads(13)
  • Abstract views(1039)
  • HTML views(215)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return