Citation: LIU Shuang,  JIANG Wen-Shuo,  LAN Xin-Yu,  LENG Jun-Qiang,  JIA Wen-Xuan,  LIU Zhen-Bo. Research Progress of Hydrogen Peroxide Fluorescent Probes[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(3): 341-355. doi: 10.19756/j.issn.0253-3820.210768 shu

Research Progress of Hydrogen Peroxide Fluorescent Probes

  • Corresponding author: LIU Zhen-Bo, zhenboliu@foxmail.com
  • Received Date: 25 September 2021
    Revised Date: 11 November 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.22075241) and the Natural Science Foundation of Shandong Province, China (No.ZR2019QB017).

  • Hydrogen peroxide (H2O2) is one of the most important reactive oxygen species (ROS) which is related to many physiological and pathological processes in biological systems. Therefore, to understand the important role of hydrogen peroxide in living systems, many fluorescent probes for hydrogen peroxide detection in the biological field have been developed in recent years. Compared with traditional detection methods, fluorescent probes have many advantages such as high sensitivity, non-invasive detection and real-time imaging. In this paper, the research progress of hydrogen peroxide probes in the past five years based on different fluorophores was reviewed, and the challenges and prospect in this field were described.
  • 加载中
    1. [1]

      GEISZT M, LETO T L. J. Biol. Chem., 2004, 279(50):51715-51718.

    2. [2]

      VEAL E A, DAY A M, MORGAN B A. Mol. Cell, 2007, 26(1):1-14.

    3. [3]

      KANVAH S, JOSEPH J, SCHUSTER G B, BARNETT R N, CLEVELAND C L, LANDMAN U. Acc. Chem. Res., 2010, 43(2):280-287.

    4. [4]

      AMES B N, SHIGENAGA M K, HAGEN T M. Proc. Natl. Acad. Sci. U.S.A., 1993, 90(17):7915-7922.

    5. [5]

      RADEKE H H, MEIER B, TOPLEY N, FLÖGE J, HABERMEHL G G, RESCH K. Kidney Int., 1990, 37(2):767-775.

    6. [6]

      BEHL C, DAVIS J B, LESLEY R, SCHUBERT D. Cell, 1994, 77(6):817-827.

    7. [7]

      ABE J I, BERK B C. Trends Cardiovasc. Med., 1998, 8(2):59-64.

    8. [8]

      GILL R, BAHSHI L, FREEMAN R, WILLNER I. Angew. Chem., Int. Ed., 2008, 47(9):1676-1679.

    9. [9]

      ZHANG Y, DAI M, YUAN Z. Anal. Methods, 2018, 10(38):4625-4638.

    10. [10]

      MILLER E W, ALBERS A E, PRALLE A, ISACOFF E Y, CHANG C J. J. Am. Chem. Soc., 2005, 127(47):16652-16659.

    11. [11]

      KUMAR V M, SANGEETHA D, SANJEEVA Y, JOSEPH J J. J. Indian Chem. Soc., 2015, 92(4):472-474.

    12. [12]

      BEHERA T K, SAHU S C, SATPATI B, BAG B, SANJAY K, JENA B K. Electrochim. Acta, 2016, 206:238-245.

    13. [13]

      COCHEMÉ H M, LOGAN A, PRIME T A, ABAKUMOVA I, QUIN C, MCQUAKER S J, PATEL J V, FEARNLEY I M, JAMES A M, PORTEOUS C M, SMITH R A J, HARTLEY R C, PARTRIDGE L, MURPHY M P. Nat. Protoc., 2012, 7(5):946-958.

    14. [14]

      VAN DE BITTNER G C, DUBIKOVSKAYA E A, BERTOZZI C R, CHANG C J. Proc. Natl. Acad. Sci. U.S.A., 2010, 107(50):21316-21321.

    15. [15]

      LIANG L, LAN F, LI L, SU M, GE S, YU J, LIU H, YAN M. Biosens. Bioelectron., 2016, 82:204-211.

    16. [16]

      RHEE S G, CHANG T S, JEONG W, KANG D. Mol. Cell, 2010, 29(6):539-549.

    17. [17]

      CHEN X, WANG F, HYUN J Y, WEI T, QIANG J, REN X, SHIN I, YOON J. Chem. Soc. Rev., 2016,45(10):2976-3016.

    18. [18]

      REN M, DENG B, ZHOU K, KONG X, WANG J Y, LIN W. Anal. Chem., 2017, 89(1):552-555.

    19. [19]

      XIAO H, LI P, HU X, SHI X, ZHANG W, TANG B. Chem. Sci., 2016, 7(9):6153-6159.

    20. [20]

      LIU K, SHANG H, KONG X, REN M, WANG J Y, LIU Y, LIN W. Biomaterials, 2016, 100:162-171.

    21. [21]

      NARAYANASWAMY N, NARRA S, NAIR R R, SAINI D K, KONDAIAH P, GOVINDARAJU T. Chem. Sci., 2016, 7(4):2832-2841.

    22. [22]

      SONG Z, KWOK R T K, DING D, NIE H, LAM J W Y, LIU B, TANG B Z. Chem. Commun., 2016, 52(65):10076-10079.

    23. [23]

      XIE X, YANG X E, WU T, LI Y, LI M, TAN Q, WANG X, TANG B. Anal. Chem., 2016, 88(16):8019-8025.

    24. [24]

      DONG B, SONG X, KONG X, WANG C, TANG Y, LIU Y, LIN W. Adv. Mater., 2016, 28(39):8755-8759.

    25. [25]

      ABO M, URANO Y, HANAOKA K, TERAI T, KOMATSU T, NAGANO T. J. Am. Chem. Soc., 2011,133(27):10629-10637.

    26. [26]

      REJA S I, GUPTA M, GUPTA N, BHALLA V, OHRI P, KAUR G, KUMAR M. Chem. Commun., 2017,53(26):3701-3704.

    27. [27]

      YU F, LI P, SONG P, WANG B, ZHAO J, HAN K. Chem. Commun., 2012, 48(41):4980-4982.

    28. [28]

      LI N, HUANG J, WANG Q, GU Y, WANG P. Sens. Actuators, B, 2018, 254:411-416.

    29. [29]

      JIANG W L, WANG W X, LIU J, LI Y, LI C Y. Sens. Actuators, B, 2020, 313:128054.

    30. [30]

      SHEN Y M, ZHANG X Y, ZHANG Y Y, WU Y Y, ZHANG C X, CHEN Y D, JIN J L, LI H T. Sens. Actuators, B, 2018, 255:42-48.

    31. [31]

      ANG C Y, TAN S Y, WU S J, QU Q Y, WONGM F E, LUO Z, LI P Z, SELVAN S T, ZHAO Y L. J. Mater. Chem. C, 2016, 4(14):2761-2774.

    32. [32]

      HAN J L, LIU X J, XIONG H Q, WANG J P, WANG B H, SONG X Z, WANG W. Anal. Chem., 2020,92(7):5134-5142.

    33. [33]

      VELUSAMY N, THIRUMALAIVASAN N, BOBBA K N, PODDER A, WUS P, BHUNIYA S. J. Photochem. Photobiol., B, 2019, 191:99-106.

    34. [34]

      WANG P, WANG K, CHEN D, MAO Y, GU Y. RSC Adv., 2015, 5(104):85957-85963.

    35. [35]

      ZHOU Z L, LI Y Q, SU W, GU B, XU H, WU C Y, YIN P, LI H T, ZHANG Y Y. Sens. Actuators, B, 2019, 280:120-128.

    36. [36]

      WANG W X, JIANG W L, LIU Y, LI Y, ZHANG J, LI C Y. Sens. Actuators, B, 2020, 320:128296.

    37. [37]

      WANG P, WANG K, GU Y. Sens. Actuators, B, 2016, 228:174-179.

    38. [38]

      XIONG J C, XIA L L, LI L S, CUI M Y, GU Y Q, WANG P. Sens. Actuators, B, 2019, 288:127-132.

    39. [39]

      KIM D, KIM G, NAM S J, YIN J, YOON J. Sci. Rep., 2015, 5:8488.

    40. [40]

      REN M, DENG B, WANG J Y, KONG X, LIU Z R, ZHOU K, HE L, LIN W. Biosens. Bioelectron., 2016, 79:237-243.

    41. [41]

      GAO C C, TIAN Y, ZHANG R B, JING J, ZHANG X L. Anal. Chem., 2017, 89(23):12945-12950.

    42. [42]

      LEE J, YOON S A, CHUN J, KANG C, LEE M H. Anal. Chim. Acta, 2019, 1080:153-161.

    43. [43]

      ZHAO P, WANG K, ZHU X, ZHOU Y, WU J. Dyes Pigm., 2018, 155:143-149.

    44. [44]

      LI B S, CHEN J B, XIONG Y, YANG X, ZHAO C D, SUN J. Sens. Actuators, B, 2018, 268:475-484.

    45. [45]

      PURDEY M S, MCLENNAN H J, SUTTON-MCDOWALL M L, DRUMM D W, ZHANG X, CAPON P K, HENG S, THOMPSON J G, ABELL A D. Sens. Actuators, B, 2018, 262:750-757.

    46. [46]

      LI X, ZHAO Y, ZHENG J, ZHANG T. J. Lumin., 2021, 229:117642.

    47. [47]

      LEI Y J, XUE C, ZHANG S C, SHA Y W. Luminescence, 2016, 31(3):660-664.

    48. [48]

      HUANG X, LI Z, LIU Z, ZENG C, HU L. Dyes Pigm., 2019, 165:518-523.

    49. [49]

      ZHANG J, SHI L, LI Z, LI D, TIAN X, ZHANG C. Analyst, 2019, 144(11):3643-3648.

    50. [50]

      XU F, LI H D, YAO Q C, FAN J L, WANG J Y, PENG X J. J. Mater. Chem. B, 2016, 4(46):7363-7367.

    51. [51]

      NIE J, LIU Y, NIU J, NI Z H, LIN W Y. J. Photochem. Photobiol. A, 2017, 348:1-7.

    52. [52]

      CHEN Q X, CHENG K, WANG W H, YANG L, XIE Y S, FENG L, ZHANG J, ZHANG H T, SUN H Y. J. Pharm. Anal., 2020, 10(5):490-497.

    53. [53]

      LIU J, LIANG J, WU C, ZHAO Y. Anal. Chem., 2019, 91(10):6902-6909.

    54. [54]

      GU T, MO S, MU Y, HUANG X, HU L. Sens. Actuators, B, 2020, 309:127731.

    55. [55]

      XU J, ZHANG Y, YU H, GAO X D, SHAO S J. Anal. Chem., 2016, 88(2):1455-1461.

    56. [56]

      CHEN Y, SHI X, LU Z, WANG X, WANG Z. Anal. Chem., 2017, 89(10):5278-5284.

    57. [57]

      HOU J L, QIAN M, ZHAO H H, LI Y C, LIAO Y F, HAN G F, XU Z L, WANG F, SONG Y G, LIU Y P. Anal. Chim. Acta, 2018, 1024:169-176.

    58. [58]

      HUANG J X, LI T T, LIU R N, ZHANG R, WANG Q Q, LI N, GU Y Q, WANG P. Sens. Actuators, B, 2017, 248:257-264.

    59. [59]

      HAN J L, CHU C Y, CAO G X, MAO W X, WANG S, ZHAO Z, GAO M Q, YE H, XU X W. Bioorg. Chem., 2018, 81:362-366.

    60. [60]

      HE L, LIU X, ZHANG Y, YANG L, FANG Q, GENG Y, CHEN W, SONG X. Sens. Actuators, B, 2018, 276:247-253.

    61. [61]

      LIU X J, TIAN H H, YANG L, SU Y A, GUO M, SONG X Z. Sens. Actuators, B, 2018, 255:1160-1165.

    62. [62]

      DE SILVA A P, GUNARATNE H Q N, GUNNLAUGSSON T, HUXLEY A J M, MCCOY C P, RADEMACHER J T, RICE T E. Chem. Rev., 1997, 97(5):1515-1566.

    63. [63]

      GUO Z, ZHU W, TIAN H. Chem. Commun., 2012, 48(49):6073-6084.

    64. [64]

      ZHANG W, LIU W, LI P, HUANG F, WANG H, TANG B. Anal. Chem., 2015, 87(19):9825-9828.

    65. [65]

      ABO M, MINAKAMI R, MIYANO K, KAMIYA M, NAGANO T, URANO Y, SUMIMOTO H. Anal. Chem., 2014, 86(12):5983-5990.

    66. [66]

      LI H, YAO Q, FAN J, DU J, WANG J, PENG X. Biosens. Bioelectron., 2017, 94:536-543.

    67. [67]

      LEE H Y, JIANG X, LEE D. Org. Lett., 2009, 11(10):2065-2068.

    68. [68]

      MEYER Y, RICHARD J A, DELEST B, NOACK P, RENARD P Y, ROMIEU A. Org.Biomol. Chem., 2010,8(8):1777-1780.

    69. [69]

      SRIVASTAVA P, ALI R, RAZI S S, SHAHID M, MISRA A. Sens. Actuators, B, 2013, 181:584-595.

    70. [70]

      ELGEMEIE G H, MOHAMED R A. J. Mol. Struct., 2018, 1173:707-742.

    71. [71]

      LI Y, XIE X, YANG X E, LI M, JIAO X, SUN Y, WANG X, TANG B. Chem. Sci., 2017, 8(5):4006-4011.

    72. [72]

      XIE X, LIU G, SU X, LI Y, LIU Y, JIAO X, WANG X, TANG B. Anal. Chem., 2019, 91(10):6872-6879.

    73. [73]

      LIM C S, CHO M K, PARK M Y, KIM H M. Chem. Open, 2018, 7(1):53-56.

    74. [74]

      ZHOU L, PENG Y, WANG Q, LIN Q. J. Photochem. Photobiol., B, 2017, 167:264-268.

    75. [75]

      TREIBS A, KREUZER F H. Justus Liebigs Ann. Chem., 1968, 718(1):208-223.

    76. [76]

      LU H, MACK J, YANG Y, SHEN Z. Chem. Soc. Rev., 2014, 43(13):4778-4823.

    77. [77]

      ERANDE Y, CHEMATE S, MORE A, SEKAR N. RSC Adv., 2015, 5(109):89482-89487.

    78. [78]

      LIEBERWIRTH U, ARDEN-JACOB J, DREXHAGE K H, HERTEN D P, MVLLER R, NEUMANN M, SCHULZ A, SIEBERT S, SAGNER G, KLINGEL S, SAUER M, WOLFRUM J. Anal. Chem., 1998, 70(22):4771-4779.

    79. [79]

      FU M, XIAO Y, QIAN X, ZHAO D, XU Y. Chem. Commun., 2008, (15):1780-1782.

    80. [80]

      HILDERBRAND S A, WEISSLEDER R. Curr. Opin. Chem. Biol., 2010, 14(1):71-79.

    81. [81]

      KIYOSE K, KOJIMA H, NAGANO T. Chem.- Asian J., 2008, 3(3):506-515.

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    3. [3]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    4. [4]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    7. [7]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    8. [8]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    9. [9]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    12. [12]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    13. [13]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    14. [14]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

    15. [15]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    16. [16]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    17. [17]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    18. [18]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    19. [19]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    20. [20]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(41)
  • Abstract views(1800)
  • HTML views(332)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return