Citation: ZENG Hong-Da,  DU Xiao-Xia,  PAN Jia-Kai,  WANG Yi-Fei,  CHEN Zhen-Cheng,  LI Hua. Study on High-field Asymmetric Waveform Ion Mobility Spectrometry System Using Inert Gas to Enhance Discharge of Hollow Needle-Ring Ion Source[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 680-691. doi: 10.19756/j.issn.0253-3820.210750 shu

Study on High-field Asymmetric Waveform Ion Mobility Spectrometry System Using Inert Gas to Enhance Discharge of Hollow Needle-Ring Ion Source

  • Corresponding author: LI Hua, lihua@guet.edu.cn
  • Received Date: 16 September 2021
    Revised Date: 3 January 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.62163009, 61864001) and the Natural Science Foundation of Guangxi, China (No.2021JJD170019).

  • Resolving power and sensitivity are two important parameters to characterize the performance of high field asymmetric waveform ion mobility spectrometry (FAIMS). To simultaneously improve the resolving power and sensitivity of flat plate FAIMS, a hollow needle-ring ion source for inert gas enhanced discharge is proposed in this work. At standard atmospheric pressure, inert gases helium and argon are introduced into the needle-ring ion source to improve the ionization efficiency of the ion source and achieve effective ionization of VOCs. Helium and argon gas with gas flow rates of 0.2, 0.3 and 0.4 L/min were added at a nitrogen flow rate of 1.8 L/min and a radio frequency voltage (RF) of 300 V, respectively. Compared with pure nitrogen, the signal intensities of acetone, ethanol and ethyl acetate were increased by 19.07, 17.26 and 10.85 times, respectively, after passing helium, and 4.86, 13.37 and 4.63 times, respectively, after passing argon, and the mixture of helium, argon and nitrogen resulted in multiple ion peaks in the FAIMS spectrum. The results showed that both helium and argon could improve both resolving power and sensitivity, and that helium was more effective than argon. Mass spectrometry experiments and penning ionization theory analysis showed that the main ions produced by ionization were monomeric and dimeric ions. This study provided new ideas and methods to improve the resolving power and sensitivity of FAIMS systems.
  • 加载中
    1. [1]

      HERNÁNDEZ M M, ROPARTZ D, GARCÍA A M, ROGNIAUX H, DERVILLY P G, BIZEC B L. Molecules, 2019, 24(15):2706.

    2. [2]

      MILLER R A, NAZAROV E G, EICEMAN G A, THOMAS KING A. Sens. Actuators, A, 2001, 91(3):301-312.

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      COSTANZO M T, BOOCK J J, KEMPERMAN R H, WEI M S, YOST R A. Int. J. Mass Spectrom., 2016, 422:188-196.

    7. [7]

      ARASARADNAM R P, MCFARLANE M, DAULTON E, SKINNER J, COVINGTON J. Dig. Liver Dis., 2016, 48(2):148-153.

    8. [8]

      SUN T, HE J, QIAN S, ZHENG Y, ZHANG K, LUO J, TIAN F. Sens. Actuators, B, 2020, 320:128595.

    9. [9]

      SANTIAGO B G, HARRIS R A, ISENBERG S L, RIDGEWAY M E, PILO A L, KAPLAN D A, GLISH G L. J. Am. Soc. Mass Spectrom., 2015, 26(10):1746-1753.

    10. [10]

      WANG H W, CHEN C L, LIU Y J, ZHANG X T, KONG D Y, WANG X Z, LUO J K. Anal. Methods, 2015, 7(4):1401-1406.

    11. [11]

      SHVARTSBURG A A, DANIELSON W F, SMITH R D. Anal. Chem., 2010, 82(6):2456-2462.

    12. [12]

      SHVARTSBURG A A, SMITH R D. Anal. Chem., 2011, 83(1):23-29.

    13. [13]

      SHVARTSBURG A A, IBRAHIM Y M, SMITH R D. J. Am. Soc. Mass Spectrom., 2014, 25(3):480-489.

    14. [14]

      KUKLYA A, ENGELHARD C, KERPEN K, TELGHEDER U. J. Anal. At. Spectrom., 2016, 31(8):1574-1581.

    15. [15]

      SANTIAGO B G, HARRIS R A, ISENBERG S L, GLISH G L. Analyst, 2015, 140(20):6871-6878.

    16. [16]

      SHVARTSBURG A A, SMITH R D. Anal. Chem., 2011, 83(23):9159-9166.

    17. [17]

      BARNETT D A, PURVES R W, ELLS B, GUEVREMONT R. J. Mass Spectrom., 2000, 35(8):976-980.

    18. [18]

    19. [19]

    20. [20]

      WANG H, LIU Y J, LI S, WANG X Z, DENG J Y, CHEN C L. Int. J. Mass Spectrom., 2019, 442:7-13.

    21. [21]

      KUKLYA A, REINECKE T, UTESCHIL F, KERPEN K, ZIMMERMANN S, TELGHEDER U. Talanta, 2017, 162:159-166.

    22. [22]

    23. [23]

    24. [24]

      PURVES R W, BARNETT D A, ELLS B, GUEVREMONT R. J. Am. Soc. Mass Spectrom., 2001, 12(8):894-901.

    25. [25]

      KARPAS Z, EICEMAN G A, KRYLOV E V, KRYLOVA N. Int. J. Ion Mobility Spectrom., 2006, 7(1):C8-C18.

    26. [26]

      SHVARTSBURG A A, DANIELSON W F, SMITH R D. Anal Chem., 2010, 82:2456-2462.

    27. [27]

      KRYLOV E V, NAZAROV E G, MILLER R A. Int. J. Mass Spectrom., 2007, 266(1-3):76-85.

    28. [28]

      HIRAOKA K, FUJIMAKI S, KAMBARA S, FURUYA H, OKAZAKI S. Rapid Commun. Mass Spectrom., 2004, 18(19):2323-2330.

    29. [29]

      HIRAOKA K, FURUYA H, KAMBARA S, SUZUKI S, HASHIMOTO Y, TAKAMIZAWA A. Rapid Commun. Mass Spectrom., 2006, 20(21):3213-3222.

    30. [30]

      ANDRADE F J, SHELLEY J T, WETZEL W C, WEBB M R, GAMEZ G, RAY S J, HIEFTJE G M. Anal. Chem., 2008, 80(8):2646-2653.

    31. [31]

      DZIDIC I, CARROLL D I, STILLWELL R N, HORNING E C. Anal. Chem., 2002, 48(12):1763-1768.

    32. [32]

      HORNING E C, CARROLL D I, DZIDIC I, HAEGELE K D, HORNING M G, STILLWELL R N. J. Chromatogr. Sci., 1974, 12(11):725-729.

    33. [33]

      KAMBARA H, MITSUI Y, KANOMATA I. Anal. Chem., 1979, 51(9):1447-1452.

    34. [34]

      WEI M S, KEMPERMAN R H, YOST R A. J. Am. Soc. Mass Spectrom., 2019, 30(5):731-742.

    35. [35]

      RORRER L C, YOST R A. Int. J. Mass Spectrom., 2015, 378:336-346.

    36. [36]

      RUOTOLO B T, MCLEAN J A, GILLIG K J, RUSSELL D H. J. Mass Spectrom., 2004, 39(4):361-367.

    37. [37]

      ZENG Y, TANG F, ZHAI Y D, WANG X H. Rev. Sci. Instrum., 2017, 88(9):1-10.

  • 加载中
    1. [1]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    2. [2]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Jianan Fang Youhao Gu Zexuan Gui Laiying Zhang Jiawei Yan Ruming Yuan Xiaoming Xu . Experimental Improvement and Expansion of the Electromotive Force Method to Determine the Mean Activity Coefficient of Electrolyte Solution. University Chemistry, 2025, 40(11): 263-271. doi: 10.12461/PKU.DXHX202504055

    5. [5]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    6. [6]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    7. [7]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    8. [8]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    9. [9]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    10. [10]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    11. [11]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    12. [12]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    16. [16]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Xianyong Lu Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037

    19. [19]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    20. [20]

      Yan Zhang Xiaoyan Cao Yiming Li Shuwei Xia Mutai Bao . Comparison of Electrolyte Solutions Section in Physical Chemistry Textbooks at Home and Abroad. University Chemistry, 2025, 40(9): 303-309. doi: 10.12461/PKU.DXHX202502027

Metrics
  • PDF Downloads(6)
  • Abstract views(921)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return