Citation:
SHANG Xu-Dong, WANG Chang, YU Jing-Yuan, ZHANG Yu, DU Yan. Colorimetric Detection of Fluoride Ion by Oxidase Mimics Based on Ceric Dioxide Nanorods-Polyvinyl Alcohol Aerogel[J]. Chinese Journal of Analytical Chemistry,
;2021, 49(12): 2023-2031.
doi:
10.19756/j.issn.0253-3820.210692
-
This work demonstrated an oxidase mimic, e.g. a composite consisting of poly(vinyl alcohol) aerogel (PAA) and CeO2 nanorods in-situ modified on the aerogel surface through a hydrothermal reaction. The introduction of PAA fixed the CeO2 nanorods, making its easy to separate with reaction solution in results of an improved recycling rate. The oxidase-like activity of the composite (CeO2-PAAC) could be elevated by fluorid ion (F-), which was utilized to construct a colorimetric sensor for F-, exhibiting a detection range of 80-4000 μmol/L and a detection limit (3σ) of 63.7 μmol/L. Such a value was below the Chinese criterion for the Class V surface water (80 μmol/L). Compared to other detection methods, this method had the merits of wider detection range and proportionate detection limit. Additionally, this method possessed eligible anti-interference ability and selectivity, and was adequate in detection of F- in lake water with recovery rate of 97.1%-120.4%, validating the potential application in the real scene.
-
-
-
[1]
LIANG M M, YAN X Y. Acc. Chem. Res., 2019, 52(8):2190-2200.
-
[2]
WU J J X, WANG X Y, WANG Q, LOU Z P, LI S R, ZHU Y Y, QIN L, WEI H. Chem. Soc. Rev., 2019,48(4):1004-1076.
-
[3]
QIN Z G, CHEN B, MAO Y, SHI C, LI Y, HUANG X, YANG F, GU N. ACS Appl. Mater. Interfaces, 2020, 12(51):57382-57390.
-
[4]
PARMEKAR M V, SALKER A V. Appl. Nanosci., 2020, 10(1):317-328.
-
[5]
LI S, ZHAO X T, GANG R T, CAO B Q, WANG H. Anal. Chem., 2020, 92(7):5152-5157.
-
[6]
TAO X Q, WANG X, LIU B W, LIU J W. Biosens. Bioelectron., 2020, 168:112537.
-
[7]
ZHANG R, LU N, ZHANG J, YAN R, LI J, WANG L, WANG N, LV M, ZHANG M. Biosens. Bioelectron., 2020, 150:111881.
-
[8]
SHARMA T K, RAMANATHAN R, WEERATHUNGE P, MOHAMMADTAHERI M, DAIMA H K, SHUKLA R, BANSAL V. Chem. Commun., 2014, 50(100):15856-15859.
-
[9]
ZHANG Z P, TIAN Y, HUANG P C, WU F Y. Talanta, 2020, 208:120342.
-
[10]
LI Y Y, HE X, YIN J J, MA Y H, ZHANG P, LI J Y, DING Y Y, ZHANG J, ZHAO Y L, CHAI Z F,ZHANG Z Y. Angew. Chem., Int. Ed., 2015, 54(6):1832-1835.
-
[11]
HECKERT E G, KARAKOTI A S, SEAL S, SELF W T. Biomaterials, 2008, 29(18):2705-2709.
-
[12]
PIRMOHAMED T, DOWDING J M, SINGH S, WASSERMAN B, HECKERT E, KARAKOTI A S, KING J E, SEAL S, SELF W T. Chem. Commun., 2010, 46(16):2736-2738.
-
[13]
ZHANG B L, HUYAN Y, WANG J Q, WANG W B, ZHANG Q Y, ZHANG H P. J. Am. Ceram. Soc., 2019, 102(4):2218-2227.
-
[14]
ASATI A, SANTRA S, KAITTANIS C, NATH S, PEREZ J M. Angew. Chem., Int. Ed., 2009, 48(13):2308-2312.
-
[15]
LIU H Y, LIU J W. Chemnanomat, 2020, 6(6):947-952.
-
[16]
XU F, LU Q, HUANG P J, LIU J. Chem. Commun., 2019, 55(88):13215-13218.
-
[17]
ZHAO Y L, LI H T, WANG Y Q, WANG Y W, HUANG Z C, SU H J, LIU J W. ACS Appl. Nano Mater., 2021, 4(2):2098-2107.
-
[18]
GRULKE E, REED K, BECK M, HUANG X, CORMACK A, SEAL S. Environ. Sci.:Nano, 2014, 1(5):429-444.
-
[19]
SINGH S, DOSANI T, KARAKOTI A S, KUMAR A, SEAL S, SELF W T. Biomaterials, 2011, 32(28):6745-6753.
-
[20]
CHEN Z J, HUANG Z, HUANG S, ZHAO J L, SUN Y, XU Z L, LIU J. Analyst, 2021, 146(3):864-873.
-
[21]
LIU B, HUANG Z C, LIU J W. Nanoscale, 2016, 8(28):13562-13567.
-
[22]
LI D, GARISTO S L, HUANG P J J, YANG J, LIU B W, LIU J W. Inorg. Chem. Commun., 2019, 106:38-42.
-
[23]
AHADA C P S, SUTHAR S. Exposure Health, 2019, 11(4):267-275.
-
[24]
YAN F, MA X Y, JIN Q F, TONG Y, TANG H L, LIN X Y, LIU J Y. Microchim. Acta, 2020, 187(8):470.
-
[25]
LI L, ZHANG Y H, LI Y, DUAN Y H, QIAN Y, ZHANG P D, GUO Q J, DING J W. ACS Sens., 2020,5(11):3465-3473.
-
[26]
-
[27]
MURRAY E, LI Y, CURRIVAN S A, MOORE B, MORRIN A, DIAMOND D, MACKA M, PAULL B. J. Sep. Sci., 2018, 41(16):3224-3231.
-
[28]
FENG D Q, LIU G L, CHEN Z, LU H F, GAO Y T, FANG X B. Microchem. J., 2020, 157:104977.
-
[29]
DU F F, BAO Y Y, LIU B, TIAN J, LI Q B, BAI R. Chem. Commun., 2013, 49(41):4631-4633.
-
[30]
LIU Y, OUYANG Q, LI H H, ZHANG Z Z, CHEN Q S. ACS Appl. Mater. Interfaces, 2017, 9(21):18314-18321.
-
[31]
YADAV M, KUMARI S, KHAN S. Sustainable Chem. Pharm., 2020, 18:100344.
-
[32]
JAYEOYE T J, RUJIRALAI T. New J. Chem., 2020, 44(15):5711-5719.
-
[33]
MA C B, ZHANG Y, LIU Q, DU Y, WANG E K. Anal. Chem., 2020, 92(7):5319-5328.
-
[34]
LI L H, ZHANG M, CHANG K J, KANG Y, REN G D, HOU X Y, LIUW, WANG H J, WANG B, DIAO H P. RSC Adv., 2019, 9(55):32308-32312.
-
[35]
MA C B, DU B J, WANG E K. Adv. Funct. Mater., 2017, 27(10):1604423.
-
[36]
HUANG L, ZHANG W, CHEN K, ZHU W, LIU X, WANG R, ZHANG X, HU N, SUO Y, WANG J. Chem. Engineer. J., 2017, 330:746-752.
-
[37]
MAI H X, SUN L D, ZHANG Y W, SI R, FENG W, ZHANG H P, LIU H C, YAN C H. J. Phys. Chem. B, 2005, 109(51):24380-24385.
-
[38]
-
[1]
-
-
-
[1]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[2]
Benhua Wang , Chaoyi Yao , Yiming Li , Qing Liu , Minhuan Lan , Guipeng Yu , Yiming Luo , Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070
-
[3]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[4]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[5]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[6]
Lin LI , Le CHEN , Lingjie HOU , Jiaqi JING , Jiayu DING , Tao ZHOU , Ruiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130
-
[7]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[8]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[9]
Huaihao CHEN , Lingwen ZHANG , Yukun CHEN , Jianjun ZHANG . A water-stable metal-organic framework probe for Al3+/Ga3+/In3+ detection. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2601-2608. doi: 10.11862/CJIC.20250184
-
[10]
Ke Zhao , Zhen Liu , Luyao Liu , Changyuan Yu , Jingshun Pan , Xuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029
-
[11]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[12]
Jia-He Li , Yu-Ze Liu , Jia-Hui Ma , Qing-Xiao Tong , Jian-Ji Zhong , Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080
-
[13]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[14]
Pingping LU , Shuguang ZHANG , Peipei ZHANG , Aiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411
-
[15]
Ruifeng CHEN , Chao XU , Jianting JIANG , Tianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117
-
[16]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[17]
Yanxi LIU , Mengjia XU , Haonan CHEN , Quan LIU , Yuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423
-
[18]
Di Yang , Jiayi Wei , Hong Zhai , Xin Wang , Taiming Sun , Haole Song , Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023
-
[19]
Hongpeng He , Mengmeng Zhang , Mengjiao Hao , Wei Du , Haibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043
-
[20]
Zilin Hu , Yaoshen Niu , Xiaohui Rong , Yongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005
-
[1]
Metrics
- PDF Downloads(5)
- Abstract views(963)
- HTML views(193)
Login In
DownLoad: