Citation: LI Zi-Ying,  LI De-Yan,  YANG Jian-Mei,  HU Rong,  YANG Tong,  YANG Yun-Hui. Fluorescence Resonance Energy Transfer-DNA Nanomachine-based Cycling Signal Amplified Strategy for Detection of Prostate Specific Antigen[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1032-1040. doi: 10.19756/j.issn.0253-3820.210686 shu

Fluorescence Resonance Energy Transfer-DNA Nanomachine-based Cycling Signal Amplified Strategy for Detection of Prostate Specific Antigen

  • Corresponding author: YANG Tong,  YANG Yun-Hui, 
  • Received Date: 17 August 2021
    Revised Date: 26 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21904114, 21765026) and the Yunnan Fundamental Research Projects (Nos.202001AU070067, 202201AT070028).

  • A fluorescence resonance energy transfer (FRET)-DNA nanomachine based on BHQ-2 and Cy5 was constructed for detection of prostate specific antigen (PSA). The introduction of fuel DNA would trigger the entropy increasing effect of the DNA nanomachine to cause the recycling of DNA nanomachine and release of more Cy5 signal probes, which further facilitated the cycling signal amplification for PSA analysis. The FRET-DNA nanomachine exhibited many advantages such as enzyme-free, low background, high sensitivity, high selectivity and easy operation. The DNA complementary hybridizations in working process of DNA nanomachine were characterized by agarose gel electrophoresis. Some important experimental parameters, such as the concentration and incubating time of fuel DNA, the concentration of PSA aptamer, were optimized. Under the optimized experimental conditions, the FRET-DNA nanomachine was employed to detect PSA protein with linearity ranging from 0.1 to 100 ng/mL and the limit of detection limit was 93.3 pg/mL (3σ). Comparing with commercial PSA kits based on enzyme-linked immunosorbent assay, this proposed strategy exhibited wider linearity rang and lower detection limit, which could be used to detect PSA in real serum samples. The easy operation and high reliability of this strategy showed potential quantitative power for future biomedical detection.
  • 加载中
    1. [1]

      BATH J, TURBERFIELD A J. Nat. Nanotechnol, 2007, 2(5):275-284.

    2. [2]

      DONG Y, YAO C, ZHU Y, YANG L, LUO D, YANG D. Chem. Rev., 2020, 120(17):9420-9481.

    3. [3]

      YANG W, SHEN Y, ZHANG D, LI C, YUAN R, XU W. Anal. Chem., 2019, 91(12):7782-7789.

    4. [4]

      TORELLI E, MARINI M, PALMANO S, PIANTANIDA L, POLANO C, SCARPELLINI A, LAZZARINO M, FIRRAO G. Small, 2014, 10(14):2918-2926.

    5. [5]

      CHEN K, HUANG Q, FU T, KE G, ZHAO Z, ZHANG X, TAN W. Anal. Chem., 2020, 92(11):7404-7408.

    6. [6]

      MASON S D, TANG Y, LI Y, XIE X, LI F. TrAC-Trends Anal. Chem., 2018, 107:212-221.

    7. [7]

      CAO L P, WANG Y, BAI Y, JIANG Y J, LI C M, ZUO H, LI Y F, ZHEN S J, HUANG C Z. ACS Appl. Nano Mater., 2021, 4(3):2849-2854.

    8. [8]

      YANG X, TANG Y, MASON S D, CHEN J, LI F. ACS Nano, 2016, 10(2):2324-2330.

    9. [9]

      HUANG J, ZHU L, JU H, LEI J. Anal. Chem., 2019, 91(11):6981-6985.

    10. [10]

      WU N, WANG K, WANG Y T, CHEN M L, CHEN X W, YANG T, WANG J H. Anal. Chem., 2020, 92(16):11111-11118.

    11. [11]

      YANG H, XIAO M, LAI W, WAN Y, LI L, PEI H. Anal. Chem., 2020, 92(7):4990-4995.

    12. [12]

      YANG X, SHI D, ZHU S, WANG B, ZHANG X, WANG G. ACS Sens., 2018, 3(7):1368-1375.

    13. [13]

      ZHONG X, YANG S, YANG P, DU H, HOU X, CHEN J, ZHOU R. Chem.-Eur. J., 2018, 24(71):19024-19031.

    14. [14]

      ZHANG R, LI S, WANG J, QU X, ZHAO Y, LIU S, WANG Y, HUANG J, YU J. Sens. Actuators, B, 2020, 320:128385.

    15. [15]

      HE X, ZENG T, LI Z, WANG G, MA N. Angew. Chem., Int. Ed., 2016, 55(9):3073-3076.

    16. [16]

      LV Y, CUI L, PENG R, ZHAO Z, QIU L, CHEN H, JIN C, ZHANG X B, TAN W. Anal. Chem., 2015, 87(23):11714-11720.

    17. [17]

      LI Y, LUO Z, ZHANG C, SUN R, ZHOU C, SUN C. TrAC-Trends Anal. Chem., 2021, 134:116142.

    18. [18]

      CHEN B, SU Q, KONG W, WANG Y, SHI P, WANG F. J. Mater. Chem. B, 2018, 6(19):2924-2944.

    19. [19]

      JARES-ERIJMAN E A, JOVIN T M. Nat. Biotechnol., 2003, 21(11):1387-1395.

    20. [20]

      ZHANG D Y, TURBERFIELD A J, YURKE B, WINFREE E. Science, 2007, 318(5853):1121-1125.

    21. [21]

      MA F, WEI S H, ZHANG C Y. Anal. Chem., 2019, 91(12):7505-7509.

    22. [22]

      GAO R, CHENG Z, WANG X, YU L, GUO Z, ZHAO G, CHOO J. Biosens. Bioelectron., 2018, 119:126-133.

    23. [23]

      YANG T, HOU P, ZHENG L L, ZHAN L, GAO P F, LI Y F, HUANG C Z. Nanoscale, 2017, 9(43):17020-17028.

    24. [24]

      SRIVASTAVA M, NIRALA N R, SRIVASTAVA S K, PRAKASH R. Sci. Rep., 2018, 8:1923.

    25. [25]

      FENG Z, ZHI S, GUO L, ZHOU Y, LEI C. Microchim. Acta, 2019, 186(4):252.

    26. [26]

      CHEN Y, GUO X, LIU W, ZHANG L. Microchim. Acta, 2019, 186(2):112.

    27. [27]

      FENG D, SU J, XU Y, HE G, WANG C, WANG X, PAN T, DING X, MI X. Microsyst. Nanoeng., 2021, 7(1):33.

    28. [28]

      FANG B Y, AN J, LIU B, ZHAO Y D. Colloids Surf., B, 2019, 175:358-364.

  • 加载中
    1. [1]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    2. [2]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    3. [3]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    4. [4]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    5. [5]

      Lin LILe CHENLingjie HOUJiaqi JINGJiayu DINGTao ZHOURuiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130

    6. [6]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    7. [7]

      Run Yang Huajie Pang Huiping Zang Ruizhong Zhang Zhicheng Zhang Xiyan Li Libing Zhang . Artificial Intelligence-Enabled DNA Computing: Exploring New Frontiers in Bioinformatics. University Chemistry, 2025, 40(9): 107-117. doi: 10.12461/PKU.DXHX202412135

    8. [8]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    9. [9]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    12. [12]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    13. [13]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      Ling WANGWeipeng YANZhuoyi ZHENGSihan ZHUMingxian GONGXiangyu MA . Fabrication of biochar-supported nano zero-valent iron and its high-efficiency performance for Cr(Ⅵ) removal from wastewater. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2441-2454. doi: 10.11862/CJIC.20250264

    16. [16]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    17. [17]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    18. [18]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    19. [19]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    20. [20]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

Metrics
  • PDF Downloads(10)
  • Abstract views(857)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return