Citation: CANG Huai-Wen,  LI Hang,  HUANG Wei,  ZHANG Yuan-Zhi,  LI Jing-Hua,  WANG Wei-Guo,  LI Hai-Yang. Improving Performance of Ion Mobility Spectrometry Using Bradbury-Nielsen Ion Gate Pulse Waveform Modulation[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2067-2074. doi: 10.19756/j.issn.0253-3820.210684 shu

Improving Performance of Ion Mobility Spectrometry Using Bradbury-Nielsen Ion Gate Pulse Waveform Modulation

  • Corresponding author: WANG Wei-Guo,  LI Hai-Yang, 
  • Received Date: 17 August 2021
    Revised Date: 30 September 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22027804, 91961124) and the Foundation of Dalian Institute of Chemical Physics, Chinese Academy of Sciences (Nos. DICPI201951, DICP ZZBS201701).

  • Ion mobility spectrometry (IMS) has been widely used in the field of detecting explosives, chemical agents and environmental pollutants due to the advantages such as high sensitivity, fast response ability and portability. How to improve the sensitivity and resolution of IMS has always been a research hot spot. The sensitivity and resolution are closely related to the characteristics of the initial ion current that is controlled by the voltage waveform applied to the ion gate. In this work, the voltage waveforms of different Bradbury-Nielsen (BN) ion gates were simulated by SIMION software. It was found that the performances of IMS including the sensitivity and resolution could be improved by adjusting the voltage waveform. The homemade research platform of IMS was built, and the effects of switching pulse waveform time (Δt1), pulse voltage width (GPW) and pulse voltage difference (GVD) on the signal intensity and resolution of IMS were systematically investigated. The results showed that when GPW=80 μs, the acetone ion RIP intensity was increased by 3 times and the resolution was increased by 13%. When detecting dimethyl methylphosphate (DMMP) sample (5.8 μg/L), the ion intensities of (Ac)2H+, (Ac)(DMMP) H+ and (DMMP)2H+ were increased by 81%, 156% and 260%, respectively. Meanwhile, the signal-to-noise ratio of (Ac)(DMMP) H+ was increased by 2.5 times and that of (DMMP)2H+ was increased by 3 times. The results were helpful to develop high resolution ion mobility spectrometer.
  • 加载中
    1. [1]

      PUTON J, NAMIESNIK J. TrAC-Trends Anal. Chem., 2016, 85:10-20.

    2. [2]

      SETO Y, HASHIMOTO R, TANIGUCHI T, OHRUI Y, NAGOYA T, IWAMATSU T, KOMARU S, USUI D, MORIMOTO S, SAKAMOTO Y, ISHIZAKI A, NISHIDE T, INOUE Y, SUGIYAMA H, NAKANO N. Anal. Chem., 2019, 91(8):5403-5414.

    3. [3]

      EHLERT S, WALTE A, ZIMMERMANN R. Anal. Chem., 2013, 85(22):11047-11053.

    4. [4]

      MIDEY A J, PATEL A, MORAFF C, KRUEGER C A, WU C. Talanta, 2013, 116:77-83.

    5. [5]

      VAUTZ W, HARIHARAN C, WEIGEND M. Ecol. Evol., 2018, 8(9):4370-4377.

    6. [6]

      GALLART-MATEU D, ARMENTA S, DE LA GUARDIA M. Talanta, 2016, 161:632-639.

    7. [7]

    8. [8]

      JIANG D D, LI EY, ZHOU Q H, WANG X, LI H W, JU B Y, GUO L, LIU D S, LI H Y. Anal. Chem., 2018, 90(8):5280-5289.

    9. [9]

      JIANG D D, CHEN C, WANG W M, WANG W G, LI M, WANG X, LIU Y P, LI E Y, LI H Y. Anal. Chem. Acta, 2021, 1150:338223.

    10. [10]

      TARVER E E. Sensors, 2004, 4(1-3):1-13.

    11. [11]

      CLOWERS B H, SIEMS W F, HILL H H, MASSICK S M. Anal. Chem., 2006, 78(1):44-51.

    12. [12]

      DU Y Z, CANG H W, WANG W G, HAN F L, CHEN C, LI H Y. Rev. Sci. Instrum., 2011, 82(8):086103.

    13. [13]

      SALLERAS M, KALMS A, KRENKOW A, KESSLER M, GOEBEL J, MULLER G, MARCO S. Sens. Actuators, B, 2006, 118(1-2):338-342.

    14. [14]

      KIRK A T, ZIMMERMANN S. Int. J. Ion Mobil. Spectroom., 2014, 17(3-4):131-137.

    15. [15]

      CHEN H, CHEN C, LI M, WANG W G, JIANG D D, LI H Y. Anal. Chim. Acta, 2019, 1052:96-104.

    16. [16]

      CHEN C, CHEN H, JIANG D D, LI M, HUANG W, LI H Y. Sens. Actuators, B, 2019, 295:179-185.

    17. [17]

      KIRK A T, ALLERS M, COCHEMS P, LANGEJUERGEN J, ZIMMERMANN S. Analyst, 2013, 138(18):5200-5207.

    18. [18]

      KIRK A T, KUEDDELSMANN M J, BOHNHORST A, LIPPMANN M, ZIMMERMANN S. Anal. Chem., 2020, 92(7):4838-4847.

    19. [19]

      PUTON J, KNAP A, SIODLOWSKI B. Sens. Actuators, B, 2008, 135(1):116-121.

    20. [20]

      TADJIMUKHAMEDOV F K, PUTON J, STONE J A, EICEMAN G A. Rev. Sci. Instrum., 2009, 80(10):103103.

    21. [21]

      DU Y Z, WANG W G, LI H Y. Anal. Chem., 2012, 84(3):1725-1731.

    22. [22]

      DU Y Z, WANG W G, LI H Y. Anal. Chem., 2012, 84(13):5700-5707.

    23. [23]

      CHEN C, CHEN H, LI H Y. Anal. Chem., 2017, 89(24):13398-13404.

    24. [24]

      CHEN H, CHEN C, HUANG W, LI M, XIAO Y, JIANG D D, LI H Y. Anal. Chem., 2019, 91(14):9138-9146.

    25. [25]

      CHEN C, TABRIZCHI M, WANG W G, LI H Y. Anal. Chem., 2015, 87(15):7925-7930.

    26. [26]

      ZVHLKE M, ZENICHOWSKI K, RIEBE D, BEITZ T, LÖHMANNSRÖBEN H G. Int. J. Ion Mobil Spectrom., 2017, 20(3-4):67-73.

    27. [27]

      REINECKE T, KIRK A T, AHRENS A, RADDATZ C R, THOBEN C, ZIMMERMANN S. Talanta, 2016,150(1):1-6.

    28. [28]

      LANGEJUERGEN J, ALLERS M, OERMANN J, KIRK A, ZIMMERMANN S. Anal. Chem., 2014, 86(14):7023-7032.

    29. [29]

      KIRK A T, GRUBE D, KOBELT T, WENDT C, ZIMMERMANN S. Anal. Chem., 2018, 90(9):5603-5611.

  • 加载中
    1. [1]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    2. [2]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    3. [3]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    4. [4]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    5. [5]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    7. [7]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-0. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Zhiming Feng Lili Wu Chengming Wang . Doubly Oxidized Carbene. University Chemistry, 2025, 40(9): 326-331. doi: 10.12461/PKU.DXHX202411008

    9. [9]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    10. [10]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-0. doi: 10.3866/PKU.WHXB202406014

    11. [11]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    12. [12]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    14. [14]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    15. [15]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-0. doi: 10.3866/PKU.WHXB202404006

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    20. [20]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

Metrics
  • PDF Downloads(9)
  • Abstract views(910)
  • HTML views(142)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return