Citation: ZHAO Dan,  MA Xiao,  LI Na,  WANG Fang,  CHEN Chuan-Xia,  SUN Jian. Research Progress of Fluorescent Detection Methods for Alkaline Phosphatase Activity[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(11): 1804-1815. doi: 10.19756/j.issn.0253-3820.210654 shu

Research Progress of Fluorescent Detection Methods for Alkaline Phosphatase Activity

  • Corresponding author: MA Xiao,  CHEN Chuan-Xia,  SUN Jian, 
  • Received Date: 28 July 2021
    Revised Date: 12 September 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.22104046, 21974132, 21904048), the Natural Science Foundation of Henan Province, China (No.202300410285), the Project of Science and Technology Department of Henan Province, China (Nos.212102210122, 212102310409), the Scientific Research Foundation of Luoyang Institute of Science and Technology (No.2017BZ16) and the Youth Innovation Promotion Association, Chinese Academy of Sciences (No.2018258).

  • Alkaline phosphatase (ALP), which can catalyze the dephosphorylation of various phosphorylated species, is an essential enzyme in a variety of mammalian tissues. The exploration of novel approaches for detection of ALP with high selectivity and sensitivity and intracellular imaging in living organisms is of vital importance in human health, clinical diagnosis and environmental analysis. With the development of fluorescent probes, many advantages for ALP detection, such as simple operation, non-invasive, in-situ detection, real-time imaging and so on, have been gradually highlighted. The fluorescent methods are categorized by different response mechanisms for ALP activity sensing:difference in the fluorescence between the phosphorylated substrate and corresponding product; the interaction of certain metal ions and phosphorylated substrates; the in-situ fluorogenic reaction drived by the ALP-enabled dephosphorylation process; inner filter effect; the fluorescence energy transfer system and so on. In this review, we focused on the research progresses of the fluorescent methods in detection of ALP in recent years. Furthermore, the prospects of ALP in the near future were also discussed.
  • 加载中
    1. [1]

      MILLAN J L. Purinerg. Signal., 2006, 2(2):335-341.

    2. [2]

      KHAN A R, AWAN F R, NAJAM S, ISLAM M, SIDDIQUE T, ZAIN M. J. Pak. Med. Assoc., 2015, 65(11):1182-1185.

    3. [3]

      OOI K, SHIRAKI K, MORISTHITA Y. J. Clin. Lab. Anal., 2010, 21(3):133-139.

    4. [4]

      DE LARICA R, STEVENS M M. Nat. Nanotechnol., 2012, 7(12):821-824.

    5. [5]

      KIM E K, KEEM J O, YUN H S, JUNG J, CHUNG B H. Chem. Commun., 2015, 51(15):3270-3272.

    6. [6]

      LIU Y H, GUO W L, SU B. Chin. Chem. Lett., 2019, 30(9):1593-1599.

    7. [7]

      IQBAL J. Anal. Biochem., 2011, 414(2):226-231.

    8. [8]

      RUAN C M, WANG W, GU B H. Anal. Chem., 2006, 78(10):3379-3384.

    9. [9]

      ZHENG J, SONG D D, ZHANG M. Chin. Chem. Lett., 2020, 31(5):1109-1113.

    10. [10]

      CHEN C X, ZHAO D, JIANG Y Y, NI P J, ZHANG C H, WANG B, YANG F, LU Y Z, SUN J. Anal. Chem., 2019, 91(23):15017-15024.

    11. [11]

      SUN J, ZHAO J H, BAO X F, WANG Q, YANG X R. Anal. Chem., 2018, 90(10):6339-6345.

    12. [12]

      MWILU S K, OKELLO V A, OSONGA F J, MILLER S, SADIK O A. Analyst, 2014, 139(21):5472-5481.

    13. [13]

      LIN Q S, LI Z H, YUAN Q. Chin. Chem. Lett., 2019, 30(9):1547-1556.

    14. [14]

      WANG K, WANG W, ZHANG X Y, JIANG A Q, YANG Y S, ZHU H L. TrAC-Trends Anal. Chem., 2021, 136(2):116189-116218.

    15. [15]

      KRIAN S, KHATIK R, SCHIRHAGL S. Anal. Bioanal. Chem., 2019, 411(24):6475-6485.

    16. [16]

      LEE M H, KIM J S, SESSLER J L. Chem. Soc. Rev., 2015, 44(13):4185-4191.

    17. [17]

      LAD D, BHOSALE S V, JONES L A, BHOSALE S V. ACS Appl. Mater. Interfaces, 2018, 10(15):12189-12216.

    18. [18]

      MALASHIKHINA N, GARAI-IBABE G, PAVLOV V. Anal. Chem., 2013, 85(14):6866-6870.

    19. [19]

      LIU S, WANG X, PANG S, NA W, YAN X, SU X. Anal. Chim. Acta, 2014, 827:103-110.

    20. [20]

      HALAWA M I, GAO W Y, DAQIB M, SHIMELES A K, WU F X, XU G B. Biosens. Bioelectron., 2017, 95:8-14.

    21. [21]

      LIU L, JIANG H, WANG X M. Biosens. Bioelectron., 2021, 173:112786-112793.

    22. [22]

      HUANG X M, LAN M J, WANG J, GUO L H, LIN Z Y, ZHANG F, ZHANG T, WU C M, QIU B. Anal. Chim. Acta, 2021, 1142:65-72.

    23. [23]

      LI J, SI L, BAO J, WANG Z, DAI Z. Anal. Chem., 2017, 89(6):3681-3686.

    24. [24]

      XIAO T, SUN J, ZHAO J H, LIU G Y, YANG X R. ACS Appl. Mater. Interfaces, 2018, 10(7):6560-6569.

    25. [25]

    26. [26]

    27. [27]

      KIM T I, KIM H, CHOI Y, KIM Y. Chem. Commun., 2011, 47(35):9825-9827.

    28. [28]

      TAN Y, ZHANG L, MAN K H, PELTIER R, CHEN G C, ZHANG H T, ZHOU L Y, WANG F, HO D, YAO S Q, HU Y, SUN H Y. ACS Appl. Mater. Interfaces, 2017, 9(8):6796-6803.

    29. [29]

      DONG L, MIAO Q, HAI Z, YUAN Y, LIANG G. Anal. Chem. 2015, 87(13):6475-6478.

    30. [30]

      LI Y, SONG H, XUE C, FANG Z, XIONG L, XIE H. Chem. Sci., 2020, 23(11):5889-5894.

    31. [31]

      ZHANG P, FU C, ZHANG Q U, LI S, DING C. Anal. Chem., 2019, 91(19):12377-12383.

    32. [32]

      ZHAO J H, WANG S, LU S S, SUN J, YANG X R. Nanoscale, 2018, 10(15):7163-7170.

    33. [33]

      CHEN Y, LI W Y, WANG Y, YANG X D, CHEN J, JIANG Y N, YU C, LIN Q Y. J. Mater. Chem. C, 2014, 2(20):4080-4085.

    34. [34]

      GUO L Y, CHEN D L, YANG M H. Microchim. Acta, 2017, 184(7):2165-2170.

    35. [35]

      XIANG M H, LIU J W, LI N, TANG H, LIU R Q, JIANG J H. Nanoscale, 2016, 8(8):4727-4732.

    36. [36]

      DENG H H, DENG Q, LI K L, ZHUANG Q Q, ZHUANG Y B, PENG H P, XIA X H, CHEN W. Spectrochim. Acta, Part A, 2020, 229:117875.

    37. [37]

      LI Y N, LI Y, WANG X Y, SU X G. New J. Chem., 2014, 38(9):4574-4579.

    38. [38]

      YANG Y C, SHIH Y C, HUANG S Y, LU C Y, TSENG W L. Biosens. Bioelectron., 2016, 77:242-248.

    39. [39]

      CHEN C X, YUAN Q, NI P J, JIANG Y Y, ZHAO Z L, LU Y Z. Analyst, 2018, 143(16):3821-3828.

    40. [40]

      CHEN C X, ZHAO J H, LU Y Z, SUN Y, YANG X R. Anal. Chem., 2018, 90(5):3535-3511.

    41. [41]

      GAO M P, WU R Y, MEI Q S, ZHANG C L, LING X, DENG S S, HE H B, ZHANG Y. ACS Sens., 2019, 4(11):2864-2868.

    42. [42]

      SUN J, HU T, XU X L, WANG L, YANG X R. Anal. Chem., 2016, 8(38):16846-16850.

    43. [43]

      ZHAO D, LI J, PENG C Y, ZHU S Y, SUN J, YANG X R. Anal. Chem., 2019, 91(4):2978-2984.

    44. [44]

      PENG C, XING H H, XUE Y, WANG J, LI J, WANG E K. Nanoscale, 2020, 12(3):2022-2027.

    45. [45]

      CHEN C X, ZHAO D, WANG B, NI P J, JIANG Y Y, ZHANG C H, YANG F, LU Y Z, SUN J. Anal. Chem., 2020, 92(6):4639-4646.

    46. [46]

      LIU G Y, ZHAO J H, YAN M X, ZHU S Y, DOU W C, SUN J, YANG X R. Sci. China Chem., 2020, 63(4):554-560.

    47. [47]

      ZHAO J H, WANG S, LU S S, LIU G Y, SUN J, YANG X R. Anal. Chem., 2019, 91(12):7828-7834.

    48. [48]

      ZHAO D, CHEN C X, SUN J, YANG X R. Analyst, 2016, 141(11):3280-3288.

    49. [49]

      LI G L, FU H L, CHEN X J, GONG P W, CHEN G, XIA L, WANG H, YOU J M, WU Y N. Anal. Chem., 2016, 88(5):2720-2726.

    50. [50]

      GUO Z, ZHU X H, WANG S G, LEI C Y, HUANG Y, NIE Z, YAO S Z. Nanoscale, 2018, 10(41):19579-19585.

    51. [51]

      HUANGFU X X, SHEN Y, YANG A Z, LIU L X, LUO W, ZHAO W B. Colloids. Surf. B, 2020, 191:110984.

    52. [52]

      LIU H, LI M, XIA Y, REN X. ACS Appl. Mater. Interfaces, 2017, 9(1):120-126.

    53. [53]

      NI P J, LIU S Y, JIANG Y Y, CHEN C X, WANG B, ZHANG C H, CHEN J B, LU Y Z. ACS Appl. Bio Mater., 2020, 3:6394-6399.

    54. [54]

      NI P J, CHEN C X, JIANG Y Y, ZHANG C H, WANG B, LU Y Z, WANG H. Sens. Actuators, B, 2019, 302:127415.

    55. [55]

      ZHANG J Y, LU X M, LEI Y, HOU X D, WU P. Nanoscale, 2017, 9(4):15606-15611.

    56. [56]

      CHEN C X, ZHANG G L, NI P J, JIANG Y Y, LU Y Z, LU Z L. Microchim. Acta, 2019, 186(6):348.

    57. [57]

      NI P J, CHEN C X, JIANG Y Y, ZHANG C H, WANG B, CAO B, LI C, LU Y Z. Sens. Actuators, B, 2019, 301:127080.

    58. [58]

      ZHU R F, HUANG W Y, MA X F, ZHANG Y H, YUE C C, FANG W H, HU Y, WANG J, DANG J Q, ZHAO H, LI Z X. Anal. Chim. Acta, 2019, 1089:131-143.

    59. [59]

    60. [60]

      NA W D, LI N, SU X G. Sens. Actuators, B, 2018, 274:172-179.

    61. [61]

      LIANG M Y, ZHAO B, XIONG Y, CHEN W X, HUO J Z, ZHANG F, WANG L, LI Y. Dalton Trans., 2019, 48(43):16199-16210.

    62. [62]

      QU F L, PEI H M, KONG R M, ZHU S Y, XIA L. Talanta, 2017, 165:136-142.

    63. [63]

      LIU J J, TANG D S, CHEN Z T, YAN X M, ZHONG Z, KANG L T, YAO J N. Biosens. Bioelectron., 2017, 94:271-277.

    64. [64]

      HAN X, MENG Z, LI X L, QU F L, KONG R M. Talanta, 2020, 212:120768-120775.

    65. [65]

      ZHANG Q F, ZHANG C Y, SHAHZAD S A, YU C. Talanta, 2016, 158:342-350.

    66. [66]

      LIU S G, HAN L, LI N, XIAO N, JU J Y, LI N B, LUO H Q. J. Mater. Chem. B, 2018, 6(18):2843-2850.

    67. [67]

      YANG Q, LI C Y, LI J H, ARABI M, WANG X Y, PENG H L, XIONG H, CHOO J, CHEN L X. J. Mater. Chem. C, 2020, 8(16):5554-5561.

    68. [68]

      NI P J, XIE J F, CHEN C X, JIANG Y Y, LU Y Z, HU X. Microchim. Acta, 2019, 186:202-208.

    69. [69]

      SHI F P, LI J, SUN J J, HUANG H, SU X G, WANG Z H. Talanta, 2020, 207:120341.

  • 加载中
    1. [1]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    4. [4]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    5. [5]

      Rui TIANDuo LIYuan RENJiamin CHAIXuehua SUNHaoyu LIYuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389

    6. [6]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    7. [7]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    13. [13]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    14. [14]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    15. [15]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    16. [16]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    17. [17]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    18. [18]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    19. [19]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    20. [20]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

Metrics
  • PDF Downloads(32)
  • Abstract views(1156)
  • HTML views(235)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return