Citation:
ZHAO Dan, MA Xiao, LI Na, WANG Fang, CHEN Chuan-Xia, SUN Jian. Research Progress of Fluorescent Detection Methods for Alkaline Phosphatase Activity[J]. Chinese Journal of Analytical Chemistry,
;2021, 49(11): 1804-1815.
doi:
10.19756/j.issn.0253-3820.210654
-
Alkaline phosphatase (ALP), which can catalyze the dephosphorylation of various phosphorylated species, is an essential enzyme in a variety of mammalian tissues. The exploration of novel approaches for detection of ALP with high selectivity and sensitivity and intracellular imaging in living organisms is of vital importance in human health, clinical diagnosis and environmental analysis. With the development of fluorescent probes, many advantages for ALP detection, such as simple operation, non-invasive, in-situ detection, real-time imaging and so on, have been gradually highlighted. The fluorescent methods are categorized by different response mechanisms for ALP activity sensing:difference in the fluorescence between the phosphorylated substrate and corresponding product; the interaction of certain metal ions and phosphorylated substrates; the in-situ fluorogenic reaction drived by the ALP-enabled dephosphorylation process; inner filter effect; the fluorescence energy transfer system and so on. In this review, we focused on the research progresses of the fluorescent methods in detection of ALP in recent years. Furthermore, the prospects of ALP in the near future were also discussed.
-
-
-
[1]
MILLAN J L. Purinerg. Signal., 2006, 2(2):335-341.
-
[2]
KHAN A R, AWAN F R, NAJAM S, ISLAM M, SIDDIQUE T, ZAIN M. J. Pak. Med. Assoc., 2015, 65(11):1182-1185.
-
[3]
OOI K, SHIRAKI K, MORISTHITA Y. J. Clin. Lab. Anal., 2010, 21(3):133-139.
-
[4]
DE LARICA R, STEVENS M M. Nat. Nanotechnol., 2012, 7(12):821-824.
-
[5]
KIM E K, KEEM J O, YUN H S, JUNG J, CHUNG B H. Chem. Commun., 2015, 51(15):3270-3272.
-
[6]
LIU Y H, GUO W L, SU B. Chin. Chem. Lett., 2019, 30(9):1593-1599.
-
[7]
IQBAL J. Anal. Biochem., 2011, 414(2):226-231.
-
[8]
RUAN C M, WANG W, GU B H. Anal. Chem., 2006, 78(10):3379-3384.
-
[9]
ZHENG J, SONG D D, ZHANG M. Chin. Chem. Lett., 2020, 31(5):1109-1113.
-
[10]
CHEN C X, ZHAO D, JIANG Y Y, NI P J, ZHANG C H, WANG B, YANG F, LU Y Z, SUN J. Anal. Chem., 2019, 91(23):15017-15024.
-
[11]
SUN J, ZHAO J H, BAO X F, WANG Q, YANG X R. Anal. Chem., 2018, 90(10):6339-6345.
-
[12]
MWILU S K, OKELLO V A, OSONGA F J, MILLER S, SADIK O A. Analyst, 2014, 139(21):5472-5481.
-
[13]
LIN Q S, LI Z H, YUAN Q. Chin. Chem. Lett., 2019, 30(9):1547-1556.
-
[14]
WANG K, WANG W, ZHANG X Y, JIANG A Q, YANG Y S, ZHU H L. TrAC-Trends Anal. Chem., 2021, 136(2):116189-116218.
-
[15]
KRIAN S, KHATIK R, SCHIRHAGL S. Anal. Bioanal. Chem., 2019, 411(24):6475-6485.
-
[16]
LEE M H, KIM J S, SESSLER J L. Chem. Soc. Rev., 2015, 44(13):4185-4191.
-
[17]
LAD D, BHOSALE S V, JONES L A, BHOSALE S V. ACS Appl. Mater. Interfaces, 2018, 10(15):12189-12216.
-
[18]
MALASHIKHINA N, GARAI-IBABE G, PAVLOV V. Anal. Chem., 2013, 85(14):6866-6870.
-
[19]
LIU S, WANG X, PANG S, NA W, YAN X, SU X. Anal. Chim. Acta, 2014, 827:103-110.
-
[20]
HALAWA M I, GAO W Y, DAQIB M, SHIMELES A K, WU F X, XU G B. Biosens. Bioelectron., 2017, 95:8-14.
-
[21]
LIU L, JIANG H, WANG X M. Biosens. Bioelectron., 2021, 173:112786-112793.
-
[22]
HUANG X M, LAN M J, WANG J, GUO L H, LIN Z Y, ZHANG F, ZHANG T, WU C M, QIU B. Anal. Chim. Acta, 2021, 1142:65-72.
-
[23]
LI J, SI L, BAO J, WANG Z, DAI Z. Anal. Chem., 2017, 89(6):3681-3686.
-
[24]
XIAO T, SUN J, ZHAO J H, LIU G Y, YANG X R. ACS Appl. Mater. Interfaces, 2018, 10(7):6560-6569.
-
[25]
-
[26]
-
[27]
KIM T I, KIM H, CHOI Y, KIM Y. Chem. Commun., 2011, 47(35):9825-9827.
-
[28]
TAN Y, ZHANG L, MAN K H, PELTIER R, CHEN G C, ZHANG H T, ZHOU L Y, WANG F, HO D, YAO S Q, HU Y, SUN H Y. ACS Appl. Mater. Interfaces, 2017, 9(8):6796-6803.
-
[29]
DONG L, MIAO Q, HAI Z, YUAN Y, LIANG G. Anal. Chem. 2015, 87(13):6475-6478.
-
[30]
LI Y, SONG H, XUE C, FANG Z, XIONG L, XIE H. Chem. Sci., 2020, 23(11):5889-5894.
-
[31]
ZHANG P, FU C, ZHANG Q U, LI S, DING C. Anal. Chem., 2019, 91(19):12377-12383.
-
[32]
ZHAO J H, WANG S, LU S S, SUN J, YANG X R. Nanoscale, 2018, 10(15):7163-7170.
-
[33]
CHEN Y, LI W Y, WANG Y, YANG X D, CHEN J, JIANG Y N, YU C, LIN Q Y. J. Mater. Chem. C, 2014, 2(20):4080-4085.
-
[34]
GUO L Y, CHEN D L, YANG M H. Microchim. Acta, 2017, 184(7):2165-2170.
-
[35]
XIANG M H, LIU J W, LI N, TANG H, LIU R Q, JIANG J H. Nanoscale, 2016, 8(8):4727-4732.
-
[36]
DENG H H, DENG Q, LI K L, ZHUANG Q Q, ZHUANG Y B, PENG H P, XIA X H, CHEN W. Spectrochim. Acta, Part A, 2020, 229:117875.
-
[37]
LI Y N, LI Y, WANG X Y, SU X G. New J. Chem., 2014, 38(9):4574-4579.
-
[38]
YANG Y C, SHIH Y C, HUANG S Y, LU C Y, TSENG W L. Biosens. Bioelectron., 2016, 77:242-248.
-
[39]
CHEN C X, YUAN Q, NI P J, JIANG Y Y, ZHAO Z L, LU Y Z. Analyst, 2018, 143(16):3821-3828.
-
[40]
CHEN C X, ZHAO J H, LU Y Z, SUN Y, YANG X R. Anal. Chem., 2018, 90(5):3535-3511.
-
[41]
GAO M P, WU R Y, MEI Q S, ZHANG C L, LING X, DENG S S, HE H B, ZHANG Y. ACS Sens., 2019, 4(11):2864-2868.
-
[42]
SUN J, HU T, XU X L, WANG L, YANG X R. Anal. Chem., 2016, 8(38):16846-16850.
-
[43]
ZHAO D, LI J, PENG C Y, ZHU S Y, SUN J, YANG X R. Anal. Chem., 2019, 91(4):2978-2984.
-
[44]
PENG C, XING H H, XUE Y, WANG J, LI J, WANG E K. Nanoscale, 2020, 12(3):2022-2027.
-
[45]
CHEN C X, ZHAO D, WANG B, NI P J, JIANG Y Y, ZHANG C H, YANG F, LU Y Z, SUN J. Anal. Chem., 2020, 92(6):4639-4646.
-
[46]
LIU G Y, ZHAO J H, YAN M X, ZHU S Y, DOU W C, SUN J, YANG X R. Sci. China Chem., 2020, 63(4):554-560.
-
[47]
ZHAO J H, WANG S, LU S S, LIU G Y, SUN J, YANG X R. Anal. Chem., 2019, 91(12):7828-7834.
-
[48]
ZHAO D, CHEN C X, SUN J, YANG X R. Analyst, 2016, 141(11):3280-3288.
-
[49]
LI G L, FU H L, CHEN X J, GONG P W, CHEN G, XIA L, WANG H, YOU J M, WU Y N. Anal. Chem., 2016, 88(5):2720-2726.
-
[50]
GUO Z, ZHU X H, WANG S G, LEI C Y, HUANG Y, NIE Z, YAO S Z. Nanoscale, 2018, 10(41):19579-19585.
-
[51]
HUANGFU X X, SHEN Y, YANG A Z, LIU L X, LUO W, ZHAO W B. Colloids. Surf. B, 2020, 191:110984.
-
[52]
LIU H, LI M, XIA Y, REN X. ACS Appl. Mater. Interfaces, 2017, 9(1):120-126.
-
[53]
NI P J, LIU S Y, JIANG Y Y, CHEN C X, WANG B, ZHANG C H, CHEN J B, LU Y Z. ACS Appl. Bio Mater., 2020, 3:6394-6399.
-
[54]
NI P J, CHEN C X, JIANG Y Y, ZHANG C H, WANG B, LU Y Z, WANG H. Sens. Actuators, B, 2019, 302:127415.
-
[55]
ZHANG J Y, LU X M, LEI Y, HOU X D, WU P. Nanoscale, 2017, 9(4):15606-15611.
-
[56]
CHEN C X, ZHANG G L, NI P J, JIANG Y Y, LU Y Z, LU Z L. Microchim. Acta, 2019, 186(6):348.
-
[57]
NI P J, CHEN C X, JIANG Y Y, ZHANG C H, WANG B, CAO B, LI C, LU Y Z. Sens. Actuators, B, 2019, 301:127080.
-
[58]
ZHU R F, HUANG W Y, MA X F, ZHANG Y H, YUE C C, FANG W H, HU Y, WANG J, DANG J Q, ZHAO H, LI Z X. Anal. Chim. Acta, 2019, 1089:131-143.
-
[59]
-
[60]
NA W D, LI N, SU X G. Sens. Actuators, B, 2018, 274:172-179.
-
[61]
LIANG M Y, ZHAO B, XIONG Y, CHEN W X, HUO J Z, ZHANG F, WANG L, LI Y. Dalton Trans., 2019, 48(43):16199-16210.
-
[62]
QU F L, PEI H M, KONG R M, ZHU S Y, XIA L. Talanta, 2017, 165:136-142.
-
[63]
LIU J J, TANG D S, CHEN Z T, YAN X M, ZHONG Z, KANG L T, YAO J N. Biosens. Bioelectron., 2017, 94:271-277.
-
[64]
HAN X, MENG Z, LI X L, QU F L, KONG R M. Talanta, 2020, 212:120768-120775.
-
[65]
ZHANG Q F, ZHANG C Y, SHAHZAD S A, YU C. Talanta, 2016, 158:342-350.
-
[66]
LIU S G, HAN L, LI N, XIAO N, JU J Y, LI N B, LUO H Q. J. Mater. Chem. B, 2018, 6(18):2843-2850.
-
[67]
YANG Q, LI C Y, LI J H, ARABI M, WANG X Y, PENG H L, XIONG H, CHOO J, CHEN L X. J. Mater. Chem. C, 2020, 8(16):5554-5561.
-
[68]
NI P J, XIE J F, CHEN C X, JIANG Y Y, LU Y Z, HU X. Microchim. Acta, 2019, 186:202-208.
-
[69]
SHI F P, LI J, SUN J J, HUANG H, SU X G, WANG Z H. Talanta, 2020, 207:120341.
-
[1]
-
-
-
[1]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[2]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[3]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[4]
Lei ZHANG , Cheng HE , Yang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081
-
[5]
Rui TIAN , Duo LI , Yuan REN , Jiamin CHAI , Xuehua SUN , Haoyu LI , Yuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389
-
[6]
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
-
[7]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[8]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[9]
Yingpeng ZHANG , Xingxing LI , Yunshang YANG , Zhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064
-
[10]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[11]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[12]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[13]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[14]
Xiyuan Su , Zhenlin Hu , Ye Fan , Xianyuan Liu , Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059
-
[15]
Zhonghua Xi , Xuanfeng Kong , Jinyue Yang , Bin Liu , Tingyu Zhu , Hui Zhang , Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123
-
[16]
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
-
[17]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[18]
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
-
[19]
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
-
[20]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[1]
Metrics
- PDF Downloads(32)
- Abstract views(1156)
- HTML views(235)