Citation: ZHAO Ya-Jie,  XIAO Xiao,  MA Ping-An,  LIN Jun. Application of Hollow Manganese Carbonate Nanocarriers in Chemodynamic/Sonodynamic Tumor Therapy[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2015-2022. doi: 10.19756/j.issn.0253-3820.210626 shu

Application of Hollow Manganese Carbonate Nanocarriers in Chemodynamic/Sonodynamic Tumor Therapy

  • Corresponding author: MA Ping-An,  LIN Jun, 
  • Received Date: 12 July 2021
    Revised Date: 28 September 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.51720105015, 51672269, 51929201, 51922097, 51772124, 51872282), the Science and Technology Cooperation Project between Chinese and Australian Governments (No.2017YFE0132300).

  • It is an effective attempt to increase the level of reactive oxygen species (ROS) to abrogate the redox balance and successively result in sever cells oxidative damage and death in cancer treatment. Herein, biodegradable, safe and tumor-specific hollow manganese carbonate (MnCO3) nanocarriers (HMC NPs) were synthesized by hydrothermal method. HMC NPs loaded with sonosensitizer protoporphyrin (PpIX) constituted HMC-PpIX nanoparticles (HMC-P NPs), which could be activated in the acidic tumor microenvironment (TME). By degrading and releasing Mn2+ and sonosensitizer, the overloaded Mn2+ in the tumor triggered the Fenton reaction under the physiological buffer environment of HCO3-/CO2, which converted the over-expressed endogenous hydrogen peroxide (H2O2) to highly toxic hydroxyl radicals (·OH). Moreover, under the irradiation of ultrasound, PpIX could convert oxygen in cells to singlet oxygen (1O2), forming continuous and accumulated oxygen stress. The synergistic treatment of chemodynamic therapy (CDT) and sonodynamic therapy (SDT) could produce a large amount of reactive oxygen species in tumor cells, which broke the self-regulation ability of malignant tumor cells, and caused oxidative damage to multiple intracellular organelles, and ultimately led to the death of cancer cells. In addition, under the adjuvant treatment of anticancer drugs doxorubicin (DOX) and ultrasound irradiation, the killing efficiency of cancer cell was about 90%. And the experimental group also achieved good tumor inhibition effects in vivo.
  • 加载中
    1. [1]

      GORRINI C, HARRIS I S, MAK T W. Nat. Rev. Drug Discovery, 2013, 12:931-947.

    2. [2]

      LIANG S, DENG X R, MA P A. CHENG Z Y, LIN J. Adv. Mater., 2020, 32:2003214.

    3. [3]

      HUANG P, QIAN X Q, CHEN Y, YU L D, LIN H, WANG L Y, ZHU Y F, SHI J L. J. Am. Chem. Soc., 2017, 39(3):1275-1284.

    4. [4]

      CHEN W, LIU C, JI X Y, JOSEPH J, TANG Z M, OUYANG J, XIAO Y F, KONG N, JOSHI N, FAROKHZAD O C, TAO W, XIE T. Angew. Chem., Int. Ed., 2021, 60(13):7155-7164.

    5. [5]

      FU J K, LI T, ZHU Y C, HAO Y Q. Adv. Funct. Mater., 2019, 29(51):1906195.

    6. [6]

      UM W, KO H, YOU D G, LIM S, KWAK G, SHIM M K, YANG S, LEE J, SONG Y, KIM K, PARK J H. Adv. Mater., 2020, 32(16):1907953.

    7. [7]

      LIN L S, HUANG T, SONG J B, OU X Y, WANG Z T, DENG H Z, TIAN R, LIU Y J, WANG J F, LIU Y,YU G C, ZHOU Z J, WANG S, NIU G, YANG H H, CHEN X Y. J. Am. Chem. Soc., 2019, 141(25):9937-9945.

    8. [8]

      SHI L A, WANG Y J, ZHANG C, ZHAO Y, LU C, YIN B L, YANG Y, GONG X Y, TENG L L, LIU Y L, ZHANG X B, SONG G S. Angew. Chem., Int. Ed., 2021, 60(17):9562-9572.

    9. [9]

      LIN L S, SONG J B, SONG L, KE K M, LIU Y J, ZHOU Z J, SHEN Z Y, LI J, YANG Z, TANG W, NIU G, YANG H H, CHEN X Y. Angew. Chem., Int. Ed., 2018, 57(18):4902-4906.

    10. [10]

      DING B B, SHAO S, JIANG F, DANG P P, SUN C Q, HUANG S S, MA P A, JIN D Y, Al KHERAIF A A, LIN J. Chem. Mater., 2019, 31(7):2651-2660.

    11. [11]

      QI C, HE J, FU L H, HE T, BLUM N T, YAO X K, LIN J, HUANG P. ACS Nano, 2021, 15(1):1627-1639.

    12. [12]

      WANG P, LIANG C, ZHU J W, YANG N, JIAO A H, WANG W J, SONG X J, DONG X C. ACS Appl. Mater. Interfaces, 2019, 11(44):41140-41147.

    13. [13]

      MURA S, NICOLAS J, COUVREUR P. Nat. Mater., 2013, 12(11):991-1003.

    14. [14]

      USHIO-FUKAI M, NAKAMURA Y. Cancer Lett., 2008, 266(1):37-52.

    15. [15]

      GAO S T, JIN Y, GE K, LI Z H, LIU H F, DAI X Y, ZHANG Y H, CHEN S Z, LIANG X J, ZHANG J C. Adv. Sci., 2019, 6(24):1902137.

  • 加载中
    1. [1]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    2. [2]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    3. [3]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    4. [4]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    5. [5]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    6. [6]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    7. [7]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    12. [12]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    13. [13]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    20. [20]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

Metrics
  • PDF Downloads(17)
  • Abstract views(1165)
  • HTML views(243)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return