Citation: SHAO Wen-Ya,  LIANG Yu,  LIU Jian-Xi,  LIU Hong-Tao,  WANG Zhao-Wei,  SUI Zhi-Gang,  ZHAO Bao-Feng,  ZHANG Xiao-Dan,  LIANG Zhen,  ZHANG Li-Hua,  ZHANG Yu-Kui. O-GlcNAcylation Quantification Based on Electron-Transfer/Higher-Energy Collisional Dissociation and Its Application in O-GlcNAcylation Site Mapping of Liver Proteomics in High Fat Diet-fed Mice[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2106-2116. doi: 10.19756/j.issn.0253-3820.210623 shu

O-GlcNAcylation Quantification Based on Electron-Transfer/Higher-Energy Collisional Dissociation and Its Application in O-GlcNAcylation Site Mapping of Liver Proteomics in High Fat Diet-fed Mice

  • Corresponding author: ZHANG Li-Hua, lihuazhang@dicp.ac.cn
  • Received Date: 12 July 2021
    Revised Date: 26 September 2021

    Fund Project: Supported by the Natural Science Foundation of Fujian Province, China (No.2020J01641), the National Natural Science Foundation of China (No.21605020) and the Fund Project of Fujian Medical University (No.2018QH1007).

  • O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a single carbohydrate moiety post-translational modification that occurs on serine and threonine side chains of intracellular protein and plays an important role in nutrient metabolism. However, the great research challenges are the inherently low stoichiometry, poor ionization efficiency of O-GlcNAc peptides and no specific animo acid sequence. In this study, a strategy for quantitative detection of O-GlcNAc sites was developed by combining pseudo-isobaric dimethyl strategy, which was applied for the O-GlcNAcylation sites profiling towards the mice liver. In total, 783 O-GlcNAc sites were unambiguously quantified from high-fat fed mice liver. Among which, 122 O-GlcNAc sites were differentially expressed, corresponding to 85 O-GlcNAc proteins. Finally, the biological function of the differentially expressed O-GlcNAc proteins was analyzed.
  • 加载中
    1. [1]

      TORRES C R, HART G W. J. Biol. Chem., 1984, 259(5):3308-3317.

    2. [2]

      ORTIZ-MEOZ R F, MERBL Y, KIRSCHNER M W, WALKER S. J. Am. Chem. Soc., 2014, 136(13):4845-4848.

    3. [3]

      LEE J S, ZHANG Z G. Proc. Natl. Acad. Sci. U.S.A., 2016, 113(23):E3213-E3220.

    4. [4]

      JANELTAKO J, TRAUGER S A, LAZARUS M B, WALKER S. Nat. Chem. Biol., 2016, 12(11):899-901.

    5. [5]

      SMET-NOCCA C, BRONCEL M, WIERUSZESKI J M, TOKARSKI C, HANOULLE X, LEROY A, LANDRIEU I, ROLAANDO C, LIPPENS G, HACHENBERGER C P R. Mol. Biosyst., 2011, 7(5):1420-1429.

    6. [6]

      LEVINE Z G, FAN C, MELICHER M S, ORMAN M, BENJAMIN T, WALKER S. J. Am. Chem. Soc., 2018, 140(10):3510-3513.

    7. [7]

      TRAN D H, MAY H I, LI Q F, LUO X, NIEWORD E, WANG X D, GILLETTE T G, DENG Y F, WANG Z V. Nat. Commun., 2020, 11(1):1771.

    8. [8]

      LAGERLOF O, SLOCOMB J E, HONG I, APONTE Y, BLACKSHOW S, HART G W, HUGANIR R L. Science, 2016, 351(6279):1293-1296.

    9. [9]

      HOUSLEY M P, RODGERS J T, UDESHI N D, KELLY T J, ShABANOWITZ J, HUNT D F, PUIGSERVER P, HART G W. J. Biol. Chem., 2008, 283(24):16283-16292.

    10. [10]

      ZHAO M, REN K Q, XIONG X W, CHENG M, ZHANG Z D, HUANG Z, HAN X N, YANG X Y, ALEJANDROl E U, RUAN H B. Cell. Rep., 2020, 32(6):108013.

    11. [11]

      YOON C K, YOON S Y, HWANG J S, SHIN Y J. Curr. Eye Res., 2020, 45(5):556-562.

    12. [12]

      DIERSCHKE S K, TORO A L, MILLER W P, SUNILKUMAR S, DENNIS M D. J. Biol. Chem., 2020,295(31):10831-10841.

    13. [13]

      YANG Y F, FU M N, LI M D, ZHANG K S, ZHANG B C, WANG S M, LIU Y Y, NI W M, ONG Q X, MI J, YANG X Y. Nat. Commun., 2020, 11:181.

    14. [14]

      BANERJEE P S, MA J F, HART G W. Proc. Natl. Acad. Sci. U.S.A., 2015, 112(19):6050-6055.

    15. [15]

      MAROTTA N P, LIN Y H, LEWIS Y E, AMBROSO M R, ZARO B W, ROTH M T, ARNOLD D B, LANGEN R, PRATT M R. Nat. Chem., 2015, 7(11):913-920.

    16. [16]

      TRINIDAD J C, BARKAN D T, GULLUDGE B F, THALHAMMER A, SALI A, SCHOEPFER R, BURLINGAME A L. Mol. Cell. Proteomics, 2012, 11(8):215-229.

    17. [17]

      ZENG Q, ZHAO R X, CHEN J, LI Y, LI X D, LIU X L, ZHANG W M, QUAN C S, WANG Y S, ZHAI Y X, WANG J W, YOUSSELF M, CUI R, LIANG J, GENOVESE N, CHOW L T, LI Y L, XU Z X. Proc. Natl. Acad. Sci. U. S. A., 2016, 113(33):9333-9338.

    18. [18]

      XIE S T, JIN N N, GU J L, SHI J H, SUN J M, CHU D D, ZHANG L, DAI C L, GU J H, GONG C X, IQBAL K, LIU F. Aging Cell, 2016, 15(3):455-464.

    19. [19]

      SUTTAPITUGSAKUL S, SUN F X, WU R H. Anal. Chem., 2020, 92(1):267-291.

    20. [20]

      XIAO H P, TANG G X, WU R H. Anal. Chem., 2016, 88(6):3324-3332.

    21. [21]

      PARKER B L, THAYSEN-ANDERSEN M, FAZAKERLY D J, HOLLIDAY M, PACKER N H, JAMES D E. Mol. Cell. Proteomics, 2016, 15(1):141-153.

    22. [22]

      MA J F, HART G W. Expert Rev.Proteomic, 2013, 10(4):365-380.

    23. [23]

      ZHOU Y, SHAN Y C, WU Q, ZHANG S, ZHANG L H, ZHANG Y K. Anal. Chem., 2013, 85(22):10658-10663.

    24. [24]

      HIRAIKE Y, WAKI H, YU J, NAKAMURA M, MIYAKE K, NAGANO G, NAKAKI R, SUZUKI K, KOBAYASHI H, YAMATOTO S, SUN W, AOYAMA T, HIROTA Y, OHNO H, OKI K, YONEDA M, WHITE A P, TSENG Y H, CYPESS A M, LARSEN T J, JESPERSEN N Z, SCHEELE C, TSUTSUMI S, ABURATANI H, YAMAUCHI T, KADOWAKI T. Nat. Cell. Biol., 2017, 19(9):1081-1092.

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    3. [3]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    4. [4]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    5. [5]

      Shumin ZhangYaqi WangZelin WangLibo WangChangsheng AnDifa Xu . Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation. Acta Physico-Chimica Sinica, 2025, 41(11): 100136-0. doi: 10.1016/j.actphy.2025.100136

    6. [6]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-0. doi: 10.3866/PKU.WHXB202309027

    7. [7]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    11. [11]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    12. [12]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    13. [13]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    14. [14]

      Zongsheng LIYichao WANGYujie WANGWenhao ZHUXiaoyao YINWudan YANGSongzhi ZHENGWeihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    17. [17]

      Shengli Chen Xinxin Zhao Mingxue Xing Xintai Li Xiaojie Zhang Xiuli Hu Jimin Zhang . “一触即发”:聚羧酸减水剂和水泥的魔力碰撞. University Chemistry, 2025, 40(8): 315-322. doi: 10.12461/PKU.DXHX202410036

    18. [18]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    19. [19]

      Cong-Bin JiDing-Xiong XieMei ChenYe-Ying LanBao-Hua ZhangJi-Ying YangZheng-Hui KangShu-Jie ChenYu-Wei ZhangYun-Lin Liu . Green synthesis of 2-trifluoromethylquinoline skeletons via organocatalytic N-[(α-trifluoromethyl)vinyl]isatins CN bond activation. Chinese Chemical Letters, 2025, 36(7): 110598-. doi: 10.1016/j.cclet.2024.110598

    20. [20]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

Metrics
  • PDF Downloads(13)
  • Abstract views(1198)
  • HTML views(233)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return