Citation: TANG Jin-Lan,  BAO Yi-Lin,  WU Jin-Jin,  SHANG Lin-Wei,  SHANG Hui,  XU Zhi-Bing,  WANG Hui-Jie,  YIN Jian-Hua. Study on Breast Tissue Cancerization by Polarized Micro-Raman Spectroscopy[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2048-2054. doi: 10.19756/j.issn.0253-3820.210602 shu

Study on Breast Tissue Cancerization by Polarized Micro-Raman Spectroscopy

  • Corresponding author: WANG Hui-Jie,  YIN Jian-Hua, 
  • Received Date: 1 July 2021
    Revised Date: 27 September 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.61378087), the Six Talent Peaks Project of Jiangsu Province, China (No.SWYY-034) and the Open Fund for 2020 Graduate Innovation Base (Laboratory) of Nanjing University of Aeronautics and Astronautics (No.kfjj20200315).

  • The polarized micro-Raman spectra (PMRS) technique can provide information about the orientations and ordering of molecules in samples without any special sample preparation or staining. In this work, PMRS was used to collect Raman spectra of normal and cancerous breast tissues. By spectral analysis and difference analysis, it was found that PMRS could significantly amplify the differences of main characteristic bands other than amide Ⅰ band, even the bands of proline (921 cm-1) and phenylalanine (1032 cm-1) which had unobvious difference in conventional micro-Raman spectroscopy. The results indicated that PMRS was much efficient to identify breast cancer tissue. The bimodal intensity ratio of the amide Ⅲ band (I1247/I1269) was lower than 1 in cancerous tissues, no matter excited with parallel or perpendicular polarized light, but it was lower and greater than 1 in normal tissue when excited with parallel and perpendicular polarized light, respectively, indicating that collagen fibers lost their original orientation in cancerous tissues. Meanwhile, it was proved that this phenomenon was related to the increase in the content of hydroxylated amino acids of collagen fibers after canceration. The information obtained in this study helped to elucidate the molecular mechanism of induced intravasation during breast cancer invasion more clearly. It suggested that PMRS had more potential to be developed as an effective tool for clinical diagnosis of breast cancer, to assist in the clinical diagnosis and treatment of invasive breast cancer.
  • 加载中
    1. [1]

      FERLAY J, COLOMBET M, SOERJOMATARAM I, PARKIN DONALD M, PIÑEROS M, ZNAOR A, BRAY F. Int. J. Cancer, 2021, 149(4):778-789.

    2. [2]

      LECHAGO J. Arch. Pathol. Lab. Med., 2005, 129(12):1529-1531.

    3. [3]

    4. [4]

    5. [5]

      BARROSO E M, SCHUT T B, CASPERS P J, SANTOS I P, WOLVIUS E B, KOLJENOVIĆS, PUPPELS G J.J. Raman Spectrosc., 2018, 49(4):699-709.

    6. [6]

    7. [7]

      TANAKA M, YOUNG R J. J. Mater. Sci., 2006, 41(3):963-991.

    8. [8]

      LY E, PIOT O, DURLACH A, BERNARD P, MANFAIT M. Appl. Spectrosc., 2008, 62(10):1088-1094.

    9. [9]

      DANIEL A, PRAKASARAO A, DORNADULA K, GANESAN S. Spectrochim. Acta, Part A, 2016, 152:58-63.

    10. [10]

      ZHAO J, LUI H, MCLEAN D I, ZENG H. Appl. Spectros., 2007, 61(11):1225-1232.

    11. [11]

      SHANG L W, MA D Y, FU J J, LU Y F, YIN J H. Biomed. Opt. Express, 2020, 11(7):3673-3683.

    12. [12]

      LAZARO-PACHECO D, SHAABAN A M, REHMAN S, REHMAN I. Appl. Spectrosc. Rev., 2019, 55(1):1-37.

    13. [13]

      REHMAN S, MOVASAGHI Z, TUCKER A T, JOEL S P, REHMAN I U. J. Raman Spectrosc., 2010, 38(10):1345-1351.

    14. [14]

      KNEIPP J, SCHUT T B, KLIFFEN M, MENKE-PLUIJMERS M, PUPPELS G. Vib. Spectrosc., 2003, 32(1):67-74.

    15. [15]

      TALARI A C S, MOVASAGHI Z, REHMAN S, REHMAN I. Appl. Spectrosc. Rev., 2015, 50(1):46-111.

    16. [16]

      MEUTTER J D, GOORMAGHTIGH E. Eur. Biophys. J., 2021, 50:641-651.

    17. [17]

      BONIFACIO A, SERGO V. Vib.Spectrosc., 2010, 53(2):314-317.

    18. [18]

      HAN W, CHEN S, WEI Y, FAN Q, LIU L. Proc. Natl. Acad. Sci. U. S. A., 2016, 113(40):11208-11213.

    19. [19]

      HOLMES D F, LU Y, STARBORG T, KADLER K E. Curr. Top. Dev. Bio., 2018, 130:107-142.

    20. [20]

      RITCHIE R O, BUEHLER M J, HANSMA P. Phys.Today, 2009, 62(6):41-47.

    21. [21]

      SALO A M, MYLLYHARJU J. Exp. Dermatol., 2021, 30(1):38-49.

    22. [22]

      RUNEL G, LOPEZ-RAMIREZ N, CHLASTA J, MASSE I. Cells, 2021, 10(4):887-900.

  • 加载中
    1. [1]

      Jialin Xie Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Life’s Guardian Angel: Progesterone. University Chemistry, 2024, 39(10): 416-419. doi: 10.12461/PKU.DXHX202403068

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    6. [6]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    7. [7]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    8. [8]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    9. [9]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    10. [10]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    13. [13]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    14. [14]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    15. [15]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    16. [16]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    17. [17]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    18. [18]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

Metrics
  • PDF Downloads(8)
  • Abstract views(1085)
  • HTML views(247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return