Citation: QIN Ying-Kai,  LI Shuang,  HONG Yang,  WANG Zhi-Guang,  JI Guang-Na,  CHEN Rui-Peng,  ZHAO Xu-Dong,  WANG Yu,  REN Shu-Yue,  HAN Dian-Peng,  PENG Yuan,  ZHOU Huan-Ying,  GAO Zhi-Xian,  HAN Tie. Research Process of Synthesis, Functionalization and Application of Upconversion Nanoparticles in Food Safety Detection[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 1955-1969. doi: 10.19756/j.issn.0253-3820.210487 shu

Research Process of Synthesis, Functionalization and Application of Upconversion Nanoparticles in Food Safety Detection

  • Corresponding author: GAO Zhi-Xian,  HAN Tie, 
  • Received Date: 8 May 2021
    Revised Date: 9 September 2021

    Fund Project: Supported by the National Key Research and Development Program of China(No.2018YFC1603500).

  • Upconversion nanoparticles (UCNPs) can convert low-energy excitation into high-energy emission via multiphoton absorption processes. UCNPs have some unique photophysical properties including large anti-Stokes shift, strong penetration into biological tissues, resistance to photobleaching, low background fluorescence, great chemical stability and low toxicity, therefore, they draw great attention and provide a variety of possibilities for sensing detection, bioimaging, and bioanalysis, and promoting the development of fluorescently labeled probes. In this review, the synthesis methods and surface functionalization strategies of UCNPs were summarized, also the recent progress of UCNPs on food safety detection was reviewed. Finally, the challenges faced by UCNPs and the opportunities for future development were discussed.
  • 加载中
    1. [1]

      YANG X Y, WANG D Y, SHI Y H, ZOU J H, ZHAO Q S, ZHANG Q, HUANG W, SHAO J J, XIE X J,DONG X C. ACS Appl. Mater. Interfaces, 2018, 10(15):12431-12440.

    2. [2]

      WEIBEI S. Phys. Rev. Lett., 1959, 2:83-84.

    3. [3]

      AUZEL F. Proc. IEEE, 1973, 61:758-786.

    4. [4]

      HAASE M, SCHAFER H. Angew. Chem., Int. Ed., 2011, 50(26):5808-5829.

    5. [5]

      ZHANG F, SHI Q H, ZHANG Y C, SHI Y F, DING K L, ZHAO D Y, STUCKY G D. Adv. Mater., 2011, 23:3775-3779.

    6. [6]

      CHIVIAN J S, CASE W E, EDEN D D. Appl. Phys. Lett., 1979, 35(2):124.

    7. [7]

      CHANG Y R, LEE H Y, CHEN K, CHANG C C, TSAI D S, FU C C, LIM T S, TZENG Y K, FANG C Y, HAN C C, CHANG H C, FANN W. Nat. Nanotechnol., 2008, 3:284-288.

    8. [8]

      YANG D M, DAI Y L, MA P A, KANG X J, CHENG Z Y, LI C X, LIN J. Chem.-Eur. J., 2013, 19(8):2685-2694.

    9. [9]

      LAIHINEN T, LASTUSAARI M, PIHLGREN L, RODRIGUES L C V, HOLSA J. J. Therm. Anal. Calorim., 2015, 121(1):37-43.

    10. [10]

      CHANG H J, XIE J, ZHAO B Z, LIU B T, XU S L, REN N, XIE X J, HUANG L, HUANG W. Nanomaterials, 2015, 5(1):1-25.

    11. [11]

      RADUNZ S, SCHAVKAN A, WAHL S, WUERTH C, TSCHICHE H, KRURNREY M, RESCH-GENGER U. J. Phys. Chem. C, 2018, 122(50):28958-28967.

    12. [12]

      SKRIPKA A, MARIN R, BENAYAS A, CANTON P, HEMMER E, VETRONE F. Phys. Chem. Chem. Phys, 2017, 7(70):44531-44536.

    13. [13]

      LI Y, DONG Y, AIDILIBIKE T, LIU X, GUO J, QIN W. RSC Adv., 2017, 7(70):44531-44536.

    14. [14]

      DONG J, ZHANG J, HAN Q, ZHAO X, YAN X, LIU J, GE H, GAO W. J. Lumin., 2019, 207:361-368.

    15. [15]

      MAI H X, ZHANG Y W, SUN L D, YAN C H. J. Phys. Chem. C, 2007, 111(37):13730-13739.

    16. [16]

      PANIKAR S S, RAMIIREZ-GARCIA G, VALLEJO-CARDONA A A, BANU N, PATRON-SOBERANO O A, CIALLA-MAY D, CAMACHO-VILLEGAS T A, ROSA E D L. Nanoscale, 2019, 11(43):20598-20613.

    17. [17]

      SUN L L, WANG T, SUN Y Z, LI Z X, SONG H N, ZHANG B, ZHOU G J, ZHOU H F, HU J F. Talanta, 2020,207:120294.

    18. [18]

      LI Z Q, ZHANG Y. Nanotechnology, 2008, 19:345606.

    19. [19]

      ZHU J, AGYEKUM A A, KUTSANEDZIE F Y H, LI H, CHEN Q, OUYANG Q, JIANG H. LWT-Food Sci. Technol., 2018, 97:760-769.

    20. [20]

      WANG X, ZHUANG J, PENG Q, LI Y D. Nature, 2005, 437(7055):121-124.

    21. [21]

      FENG Y, CHEN H D, MA L, SHAO B Q, ZHAO S, WANG Z X, YOU H P. ACS Appl. Mater. Interfaces, 2017, 9(17):15096-15102.

    22. [22]

      KACZOROWSKA N, SZCZESZAK A, LIS S. J. Lumin., 2018, 200:59-65.

    23. [23]

      SASIDHARAN S L, NIAGARA M I, LI Z Q, HUANG K, SOO K C, ZHANG Y. ACS Nano, 2015, 9(1):191-205.

    24. [24]

      RONG J M, LI P C, GE Y K, CHEN H L, WU J, ZHANG R W, LAO J, LOU D W, ZHANG Y X. Colloids Surf., B, 2020, 186:110674.

    25. [25]

      CHHETRI B P, KARMAKAR A, GHOSH A. Part. Part. Syst. Charact., 2019, 36(8):1900153.

    26. [26]

      HAN S Y, QIN X, AN Z F, ZHU Y H, LIANG L L, HAN Y, HUANG W, LIU X G. Nat. Commun., 2016, 7:13059.

    27. [27]

      BOGDAN N, RODRIGUEZ E M, SANZ-RODRIGUEZ F, DE LA CRUZ M C I, JUARRANZ A, JAQUE D, SOLE J G, CAPOBIANCO J A. Nanoscale, 2012, 4(12):3647-3650.

    28. [28]

      XIE X H, SONG J L, HU L Y, ZHANG S Y, WANG Y T, ZHAO Y L, LU Q. Int. J. Nanomed., 2018, 13:7633-7646.

    29. [29]

      WANG F F, ZHANG C L, QU X T, CHENG S S, XIAN Y Z. Biosens. Bioelectron., 2019, 126:96-101.

    30. [30]

      YANG H, CHEN X N, WU J S, WANG R Y, YANG H P. Sens. Actuators, B, 2019, 290:656-665.

    31. [31]

      XU S, XU S H, ZHU Y S, XU W, ZHOU P W, ZHOU C Y, DONG B, SONG H W. Nanoscale, 2014, 6(21):12573-12579.

    32. [32]

      LUO Z B, QI Q G, ZHANG L J, LUO Z B, QI Q A, ZHANG L J, ZENG R J, SU L S, TANG D P. Anal. Chem., 2019, 91(6):4149-4156.

    33. [33]

      ALONSO-CRISTOBAL P, VILELA P, EI-SAGHEER A, BROWN T, MUSKENS O L, RUBIO-RETAMA J, KANARAS A G. ACS Appl. Mater. Interfaces, 2015, 7(23):12422-12429.

    34. [34]

      GIUST D, LUCIO M I, EL-SAGHEER A H, BROWN T, WILLIAMS L E, MUSKENS O L, KANARAS A G. ACS Nano, 2018, 12(6):6273-6279.

    35. [35]

      GUO Y, ZOU R, SI F, LIANG W, ZHANG T, CHANG Y, QIAO X, ZHAO J. Food Chem., 2021, 335:127609.

    36. [36]

      TANG Y, LIU H, GAO J, LIU X, GAO X, LU X, FAN G G, WANG J, LI J. Talanta, 2018, 181:95-103.

    37. [37]

      CHEN H, PANG X, NI Z, LIU M, ZHANG Y, YAO S. Anal. Chim. Acta, 2020, 1095:146

    38. [38]

      LIU L, ZHANG H, WANG Z, SONG D. Biosens. Bioelectron., 2019, 141:111403.

    39. [39]

      CHAN M H, LAI C Y, CHAN Y C, HSIAO M, CHUNG R J, CHEN X, LIU R S. Nanomedicine, 2019, 14(14):1791-1804.

    40. [40]

      LIU J, LU L, LI A, TANG J, WANG S, XU S, WANG L. Biosens. Bioelectron., 2015, 68:204.

    41. [41]

      YUAN J, CEN Y, KONG X J, WU S, LIU C L, YU R Q, CHU X. ACS Appl. Mater. Interfaces, 2015, 7(19):10548-10555.

    42. [42]

      OUYANG Q, WANG L, AHMAD W, RONG Y, LI H, HU Y, CHEN Q. Food Chem., 2021, 349:129157.

    43. [43]

      XU Z, ZHANG L W, LONG L L, ZHU S H, CHEN M L, DING L, CHENG Y H. Front. Bioeng. Biotechnol., 2020, 8:626269.

    44. [44]

      LIU C, WANG Z, JIA H, LI Z. Chem. Commun., 2011, 47:4661-4663.

    45. [45]

      ZHANG L, YIN S, HOU J, ZHANG W, HUANG H, LI Y, YU C. Food Chem., 2019, 270:415-419.

    46. [46]

      LI J, ZHANG C, YIN M, ZHANG Z, CHEN Y, DENG Q, WANG S. ACS Omega, 2019, 4(14):15947-15955.

    47. [47]

    48. [48]

    49. [49]

    50. [50]

    51. [51]

    52. [52]

    53. [53]

    54. [54]

    55. [55]

    56. [56]

      WANG P, LI H, HASSAN M M, GUO Z, ZHANG Z Z, CHEN Q. J. Agric. Food Chem., 2019, 67(14):4071-4079.

    57. [57]

      LIU M, ZHANG L, JIANG S, FU Z F. Microchem. J., 2020, 152:104451.

    58. [58]

      CHEN H, DING Y, YANG Q, BARNYCH B, GONZÁLEZ-SAPIENZA G, HAMMOCK B D, WANG M, HUA X. ACS Appl. Mater. Interfaces, 2019, 11(36):33380-33389.

    59. [59]

    60. [60]

      HLAVACEK A, FARKA Z, HUBNER M, HORNAKOVA V, NEMECEK D, NIESSNER R, SKLADAL P, KNOPP D, GORRIS H H. Anal. Chem., 2016, 88(11):6011-6017.

    61. [61]

      WANG F, HAN Y, WANG S, YE Z, WEI L, XIAO L. Anal. Chem., 2019, 91(18):11856-11863.

    62. [62]

      WU Z, HE D, CUI B. Microchim. Acta, 2018, 185(11):516.

    63. [63]

      ZHAO X, WANG Y, LI J, HUO B, HUANG H, BAI J, PENG Y, LI S, HAN D, REN S, WANG J, GAO Z. Anal. Chim. Acta, 2021, 1160:338450.

    64. [64]

      YU J, GUO T, ZHANG W, LI B, LIU L, HUA R. J. Alloys Compd., 2019, 771:187-194.

    65. [65]

      SI F, ZOU R, JIAO S, QIAO X, GUO Y, ZHU G. Ecotoxicol. Environ. Saf., 2018, 148:862-868.

    66. [66]

      SUN N, DING Y, TAO Z, YOU H, HUA X, WANG M. Food Chem., 2018, 257:289-294.

    67. [67]

      LIU X, REN J, SU L, GAO X, TANG Y, MA T, ZHU L, LI J. Biomol. Spectrosc., 2017, 87:203-208.

    68. [68]

      HU G, SHENG W, LI J, ZHANG Y, WANG J, WANG S. Anal. Chim. Acta, 2017, 982:185-192.

    69. [69]

    70. [70]

      WANG Y, ZHAO X D, ZHANG M, SUN X, BAI J, PENG Y, LI S, HAN D, REN S, WANG J, HAN T, GAO Y, NING B, GAO Z. J. Hazard. Mater., 2021, 406:124703.

    71. [71]

      LIN X, YU Q, YANG W, HE C, ZHOU Y, DUAN N, WU S. Food Chem., 2021, 345:128809.

    72. [72]

      RONG Y, ALI S, OUYANG Q, WANG L, LI H, CHEN Q. J. Food Compos. Anal., 2021, 1016:103929.

    73. [73]

      LI Y, LI Y, ZHANG D, TAN W, SHI J, LI Z, LIU H, YU Y, YANG L, WANG X, GONG Y, ZOU X. LWT-Food Sci. Technol., 2021, 1016:111541.

  • 加载中
    1. [1]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    2. [2]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    3. [3]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    4. [4]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    9. [9]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    10. [10]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    11. [11]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    12. [12]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    13. [13]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    14. [14]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    15. [15]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    16. [16]

      Tinghui ANDong XIANGJiaqi LIJiawei WANGShuming YUNan WANGKedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412

    17. [17]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    18. [18]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    19. [19]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    20. [20]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

Metrics
  • PDF Downloads(14)
  • Abstract views(1173)
  • HTML views(198)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return