Citation:
GAO Xiao-Mei, YIN Xin-Chi, TAN Si-Yuan, DAI Xin-Hua, GONG Xiao-Yun, GONG Ai-Jun. Recent Advances in Supercharging of Proteins During Electrospray Ionization[J]. Chinese Journal of Analytical Chemistry,
;2021, 49(10): 1607-1618.
doi:
10.19756/j.issn.0253-3820.210485
-
Electrospray ionization (ESI) is one of the most commonly used mass spectrometry ionization techniques for biomolecules at present. Biological macromolecules such as proteins can carry multiple charges and form multiply charged ions during ESI. The formation of multiply charged protein ions can effectively reduce the mass-to-charge ratio (m/z) of the ions to be measured, expand the range of molecular weights detectable and improve the detection sensitivity, which brings more convenience to mass spectrometry analysis of biological macromolecules. Recently, several methods have been proposed to further increase the charge of protein ions during ESI, and these methods has been called supercharging of proteins. In this paper, several methods for supercharging of proteins developed recently are systematically classified and summarized, the ionization mechanism and influencing factors of these methods are reviewed, and their applications are also introduced.
-
-
-
[1]
CHAPMAN S. Phys. Rev., 1937, 52(3):184-190.
-
[2]
DOLE M, MACK L L, HINES R L, MOBLEY R C. J. Chem. Phys., 1968, 49(5):2240.
-
[3]
MACK L L, KRALIK P, RHEUDE A, DOLE M. J. Chem. Phys., 1970, 52(10):4977-4986.
-
[4]
FENN J B, MANN M, MENG C K, WONG S, WHITEHOUSE C. Science, 1989, 246(4926):64-71.
-
[5]
BRUNINS A P, COVEY T R, HENION J D. Anal. Chem., 1987, 59(22):2642-2646.
-
[6]
WHITEHOUSE C M, DREYER R N, YAMASHITA M, FENN J B. Anal. Chem., 1985, 57(3):675-679.
-
[7]
WWILM M, MANN M. Anal. Chem., 1996, 68(1):1-8.
-
[8]
IAVARONE A T, JURCHEN J C, WILLIAMS E R. Anal. Chem., 2001, 73(7):1455-1460.
-
[9]
IAVARONE A T, WILLIAMS E R. Int. J. Mass Spectrom., 2002, 219(1):63-72.
-
[10]
IAVARONE A T, WILLIAMS E R. J. Am. Chem. Soc., 2003, 125(8):2319-2327.
-
[11]
HILLENKAMP F, KARAS M, BEAVIS R C, CHAIT B T. Anal. Chem., 1991, 63(24):1288.
-
[12]
KITOVA E N, EL-HAWIET A, SCHNIER P D, KLASSEN J S. J. Am. Soc. Mass Spectrom., 2012, 23(3):431-441.
-
[13]
HOGAN C J, CARROLL J A, ROHRS H W, BISWAS P, GROSS M L. Anal. Chem., 2009, 81(1):369-377.
-
[14]
METWALLY H, KONERMANN L. Anal. Chem., 2018, 90(6):4126-4134.
-
[15]
METWALLY H, DUEZ Q, KONERMANN L. Anal Chem., 2018, 90(16):10069-10077.
-
[16]
TEO C A, DONALD W A. Anal. Chem., 2014, 86(9):4455-4462.
-
[17]
DOUGLASS K A, VENTER A R. J. Am. Soc. Mass Spectrom., 2012, 23(3):489-497.
-
[18]
LOMELI S H, YIN S P, LOO R O. J. Am. Soc. Mass Spectrom., 2010, 21(1):127-131.
-
[19]
ZENAIDEE M A, LEEMING M G, ZHANG F T, FUNSTON T T, DONALD W A. Angew. Chem., Int. Ed., 2017, 56(29):8522-8526.
-
[20]
SHERLING H J, DALY M P, FELD G K, THOREN K L, KINTZER A F, KRANTZ B A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2010, 21(10):1762-1774.
-
[21]
WYTTENBACH T, BOWERS M T. J. Phys. Chem. B, 2011, 115(42):12266-12275.
-
[22]
HALL Z, ROBINSON C V. J. Am. Soc. Mass Spectrom., 2012, 23(7):1161-1168.
-
[23]
NSHANIAN M, LAKSHMANAN R, CHENG H, LOO R O, LOO J A. Int. J. Mass Spectrom., 2018, 427:157-164.
-
[24]
BENNETT R, OLESIK S V. Anal. Chim. Acta, 2017, 960:151-159.
-
[25]
WANG Y H, OLESIK S V. Anal. Chem., 2019, 91(1):935-942.
-
[26]
FOLEY E D, ZENAIDEE M A, TABOR R F, HO J, BEVES J E, DONALD W A. Anal. Chim. Acta:X, 2019, 1:100004.
-
[27]
KHANAL D D, BAGHDADY Y Z, FIGARD B J, SCHUG K A. Rapid Commun. Mass Spectrom., 2019, 33(9):821-830.
-
[28]
FLICK T G, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2012, 23(11):1885-1895.
-
[29]
ABZALIMOV R R, KALTASHOV I A. Anal. Chem., 2010, 82(18):7523-7526.
-
[30]
YANG Y, NIU C D, BOBST C E, KALTASHOV I A. Anal. Chem., 2021, 93(7):3337-3342.
-
[31]
KEENER J E, ZAMBRANO D E, ZHANG G Z, ZAK C K, REID D J, DEODHAR B S, PEMBERTON J E, PRELL J S, MARTY M T. J. Am. Chem. Soc., 2019, 141(2):1054-1061.
-
[32]
MARTY M T, HOI K K, GAULT J, ROBINSON C V. Angew. Chem., Int. Ed., 2016, 55(2):550-554.
-
[33]
KE M F, ZHANG H, DING J H, XIONG X C, LI F L, CHINGIN K, KOU W, LIUA Y, ZHU T G, FANG X, CHEN H W. Anal. Chem., 2019, 91(5):3215-3220.
-
[34]
SANTOS I C, BRODBELT J S. J. Am. Soc. Mass Spectrom., 2021, 32(6):1370-1379.
-
[35]
LI X Y, LI Z X, XIE B E, SHARP J S. J. Am. Soc. Mass Spectrom., 2015, 26(8):1424-1427.
-
[36]
MEYER J G, KOMIVES E A. J. Am. Soc. Mass Spectrom., 2012, 23(8):1390-1399.
-
[37]
ZHANG J, LOO R O, LOO J A. Int. J. Mass Spectrom., 2015, 377(1):546-556.
-
[38]
WANSEELE Y V, BONGAERTSA J, SEGERSA K, VIAENEB J, BUNDELA D D, HEYDEN Y V, SMOLDERSA I, EECKHAUT A V. Talanta, 2019, 198:206-214.
-
[39]
VALEJA S G, KAISER N K, XIAN F, HENDRICKSON C L, ROUSE J C, MARSHALL A G. Anal. Chem., 2011, 83(22):8391-8395.
-
[40]
COMPTON P D, ZAMDBORG L, THOMAS P M, KELLEHER N L. Anal. Chem., 2011, 83(17):6868-6874.
-
[41]
MIRZA U A, CHAIT B T. Int. J. Mass Spectrom. Ion Processes, 1997, 162(1-3):173-181.
-
[42]
GOING C C, XIA Z J, WILLIAMS E R. Analyst, 2015, 140(21):7184-7194.
-
[43]
SHERLING H J, CASSOU C A, TRNKA M J, BURLINGAME A L, KRANTZ B A, WILLIAMS E R. Phys. Chem. Chem. Phys., 2011, 13(41):18288-18296.
-
[44]
SHERLING H J, WILLIAMS E R. Anal. Chem., 2010, 82(21):9050-9057.
-
[45]
SHERLING H J, DALY M P, FELD G K, THOREN K L, KINTZER A F, KRANTZ B A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2010, 21(10):1762-1774.
-
[46]
SHERLING H J, PRELL J S, CASSOU C A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2011, 22(7):1178-1186.
-
[47]
CASSOU C A, WILLIAMS E R. Anal. Chem., 2014, 86(3):1640-1647.
-
[48]
MORTENSEN D N, WILLIAMS E R. Analyst, 2016, 141(19):5598-5606.
-
[49]
MORTENSEN D N, WILLIAMS E R. J. Am. Chem. Soc., 2016, 138(10):3453-3460.
-
[50]
MORTENSEN D N, WILLIAMS E R. Anal. Chem., 2016, 88(19):9662-9668.
-
[51]
MARK L P, GILL M C, MAHUT M, DERRICK P J. Eur. J. Mass Spectrom., 2012, 18(5):439-446.
-
[52]
FISHER C M, KHARLAMOVA A, MCLUCKEY S A. Anal. Chem., 2014, 86(9):4581-4588.
-
[53]
ZHAO F F, MATT S M, BU J X, REHRAUER O G, BEN-AMOTZ D, MCLUCKEY S A. J. Am. Soc. Mass Spectrom., 2017, 28(10):2001-2010.
-
[54]
CAVANAGH J, BENSON L M, TOMPSON R, NAYLOR S. Anal. Chem., 2003, 75(14):3281-3286.
-
[55]
WILSON D J, KONERMANN L. Anal. Chem., 2005, 77(21):6887-6894.
-
[56]
NGUYEN G T, TRAN T N, PODGORSKI M N, BELL S G, SUPURAN C T, DONALD W A. ACS Cent. Sci., 2019, 5(2):308-318.
-
[57]
GONG X Y, XIONG X C, ZHAO Y C, YE S J, FANG X. Anal. Chem., 2017, 89(13):7009-7016.
-
[58]
GONG X Y, LI C, ZHAI R, XIE J, JIANG Y, FANG X. Anal. Chem., 2019, 91(3):1826-1837.
-
[59]
FENG L L, GONG X Y, SONG J F, ZHAI R, HUANG Z J, FANG X, DAI X H. Anal. Chem., 2020, 92(2):1770-1779.
-
[60]
KONERMANN L. J. Am. Soc. Mass Spectrom., 2017, 28(9):1827-1835.
-
[61]
KONERMANN L, METWALLY H, DUEZ Q, PETER I. Analyst, 2019, 144(21):6157-6171.
-
[62]
RAHMAN M M, CHEN L C. Anal. Chim. Acta, 2018, 1021:78-84.
-
[63]
YIN Z B, HUANG J, MIAO H, HU O, LI H L. Anal. Chem., 2020, 92(18):12312-12321.
-
[64]
BOUZA M, LI Y F, WU C S, GUO H Y, FERNANDEZ F M. J. Am. Soc. Mass Spectrom., 2020, 31(3):727-734.
-
[1]
-
-
-
[1]
Jiahao Lu , Xin Ming , Yingjun Liu , Yuanyuan Hao , Peijuan Zhang , Songhan Shi , Yi Mao , Yue Yu , Shengying Cai , Zhen Xu , Chao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045
-
[2]
Ying Yang , Yonghan Wu , Zixuan Li , Lu Zhang , Rongqin Lin , Yefan Zhang , Jiquan Liu , Xiaohui Ning , Yan Li , Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024
-
[3]
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
-
[4]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002
-
[5]
Mengyang LI , Hao XU , Zhonghao NIU , Chunhua GONG , Weihui ZHONG , Jingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080
-
[6]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
-
[7]
Hui Zhang , Zijian Zhao , Yajing Wang , Kai Ni , Yanfei Wang , Liang Zhu , Jianyun Liu , Xiaoyu Zhao . Structurally engineered solvent-free LiFePO4 electrodes via hot-pressing with efficient ion transport pathways for lithium extraction from brine. Acta Physico-Chimica Sinica, 2026, 42(2): 100130-0. doi: 10.1016/j.actphy.2025.100130
-
[8]
Ke Zhao , Zhen Liu , Luyao Liu , Changyuan Yu , Jingshun Pan , Xuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029
-
[9]
Zhou Fang , Zhihao Zhang , Weihan Jiang , Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038
-
[10]
Xiaoyang Li , Xiaowei Huang , Yimeng Zhang , Huan Liu , Shao Jin , Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035
-
[11]
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
-
[12]
Hui Shi , Shuangyan Huan , Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042
-
[13]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[14]
Feng Liang , Desheng Li , Yuting Jiang , Jiaxin Dong , Dongcheng Liu , Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009
-
[15]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[16]
Yujia Luo , Yunpeng Qi , Huiping Xing , Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037
-
[17]
Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039
-
[18]
Liqiang Huang , Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074
-
[19]
Lancanghong Chen , Xingtai Yu , Tianlei Zhao , Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089
-
[20]
Fengmei Wang , Xin Zhang , Hong Yan , Xiangyu Xu , Guirong Wang . Inverted 'Π' Graphic Memory Method for Thermodynamic Basic Equations and the Application in Teaching Practice. University Chemistry, 2025, 40(11): 369-375. doi: 10.12461/PKU.DXHX202412087
-
[1]
Metrics
- PDF Downloads(19)
- Abstract views(1398)
- HTML views(276)
Login In
DownLoad: