Citation: GAO Xiao-Mei,  YIN Xin-Chi,  TAN Si-Yuan,  DAI Xin-Hua,  GONG Xiao-Yun,  GONG Ai-Jun. Recent Advances in Supercharging of Proteins During Electrospray Ionization[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1607-1618. doi: 10.19756/j.issn.0253-3820.210485 shu

Recent Advances in Supercharging of Proteins During Electrospray Ionization

  • Corresponding author: GONG Xiao-Yun,  GONG Ai-Jun, 
  • Received Date: 7 May 2021
    Revised Date: 21 July 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21927812) and the Fundamental Research Operating Expenses of the National Institute of Metrology, China (No.AKY1932).

  • Electrospray ionization (ESI) is one of the most commonly used mass spectrometry ionization techniques for biomolecules at present. Biological macromolecules such as proteins can carry multiple charges and form multiply charged ions during ESI. The formation of multiply charged protein ions can effectively reduce the mass-to-charge ratio (m/z) of the ions to be measured, expand the range of molecular weights detectable and improve the detection sensitivity, which brings more convenience to mass spectrometry analysis of biological macromolecules. Recently, several methods have been proposed to further increase the charge of protein ions during ESI, and these methods has been called supercharging of proteins. In this paper, several methods for supercharging of proteins developed recently are systematically classified and summarized, the ionization mechanism and influencing factors of these methods are reviewed, and their applications are also introduced.
  • 加载中
    1. [1]

      CHAPMAN S. Phys. Rev., 1937, 52(3):184-190.

    2. [2]

      DOLE M, MACK L L, HINES R L, MOBLEY R C. J. Chem. Phys., 1968, 49(5):2240.

    3. [3]

      MACK L L, KRALIK P, RHEUDE A, DOLE M. J. Chem. Phys., 1970, 52(10):4977-4986.

    4. [4]

      FENN J B, MANN M, MENG C K, WONG S, WHITEHOUSE C. Science, 1989, 246(4926):64-71.

    5. [5]

      BRUNINS A P, COVEY T R, HENION J D. Anal. Chem., 1987, 59(22):2642-2646.

    6. [6]

      WHITEHOUSE C M, DREYER R N, YAMASHITA M, FENN J B. Anal. Chem., 1985, 57(3):675-679.

    7. [7]

      WWILM M, MANN M. Anal. Chem., 1996, 68(1):1-8.

    8. [8]

      IAVARONE A T, JURCHEN J C, WILLIAMS E R. Anal. Chem., 2001, 73(7):1455-1460.

    9. [9]

      IAVARONE A T, WILLIAMS E R. Int. J. Mass Spectrom., 2002, 219(1):63-72.

    10. [10]

      IAVARONE A T, WILLIAMS E R. J. Am. Chem. Soc., 2003, 125(8):2319-2327.

    11. [11]

      HILLENKAMP F, KARAS M, BEAVIS R C, CHAIT B T. Anal. Chem., 1991, 63(24):1288.

    12. [12]

      KITOVA E N, EL-HAWIET A, SCHNIER P D, KLASSEN J S. J. Am. Soc. Mass Spectrom., 2012, 23(3):431-441.

    13. [13]

      HOGAN C J, CARROLL J A, ROHRS H W, BISWAS P, GROSS M L. Anal. Chem., 2009, 81(1):369-377.

    14. [14]

      METWALLY H, KONERMANN L. Anal. Chem., 2018, 90(6):4126-4134.

    15. [15]

      METWALLY H, DUEZ Q, KONERMANN L. Anal Chem., 2018, 90(16):10069-10077.

    16. [16]

      TEO C A, DONALD W A. Anal. Chem., 2014, 86(9):4455-4462.

    17. [17]

      DOUGLASS K A, VENTER A R. J. Am. Soc. Mass Spectrom., 2012, 23(3):489-497.

    18. [18]

      LOMELI S H, YIN S P, LOO R O. J. Am. Soc. Mass Spectrom., 2010, 21(1):127-131.

    19. [19]

      ZENAIDEE M A, LEEMING M G, ZHANG F T, FUNSTON T T, DONALD W A. Angew. Chem., Int. Ed., 2017, 56(29):8522-8526.

    20. [20]

      SHERLING H J, DALY M P, FELD G K, THOREN K L, KINTZER A F, KRANTZ B A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2010, 21(10):1762-1774.

    21. [21]

      WYTTENBACH T, BOWERS M T. J. Phys. Chem. B, 2011, 115(42):12266-12275.

    22. [22]

      HALL Z, ROBINSON C V. J. Am. Soc. Mass Spectrom., 2012, 23(7):1161-1168.

    23. [23]

      NSHANIAN M, LAKSHMANAN R, CHENG H, LOO R O, LOO J A. Int. J. Mass Spectrom., 2018, 427:157-164.

    24. [24]

      BENNETT R, OLESIK S V. Anal. Chim. Acta, 2017, 960:151-159.

    25. [25]

      WANG Y H, OLESIK S V. Anal. Chem., 2019, 91(1):935-942.

    26. [26]

      FOLEY E D, ZENAIDEE M A, TABOR R F, HO J, BEVES J E, DONALD W A. Anal. Chim. Acta:X, 2019, 1:100004.

    27. [27]

      KHANAL D D, BAGHDADY Y Z, FIGARD B J, SCHUG K A. Rapid Commun. Mass Spectrom., 2019, 33(9):821-830.

    28. [28]

      FLICK T G, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2012, 23(11):1885-1895.

    29. [29]

      ABZALIMOV R R, KALTASHOV I A. Anal. Chem., 2010, 82(18):7523-7526.

    30. [30]

      YANG Y, NIU C D, BOBST C E, KALTASHOV I A. Anal. Chem., 2021, 93(7):3337-3342.

    31. [31]

      KEENER J E, ZAMBRANO D E, ZHANG G Z, ZAK C K, REID D J, DEODHAR B S, PEMBERTON J E, PRELL J S, MARTY M T. J. Am. Chem. Soc., 2019, 141(2):1054-1061.

    32. [32]

      MARTY M T, HOI K K, GAULT J, ROBINSON C V. Angew. Chem., Int. Ed., 2016, 55(2):550-554.

    33. [33]

      KE M F, ZHANG H, DING J H, XIONG X C, LI F L, CHINGIN K, KOU W, LIUA Y, ZHU T G, FANG X, CHEN H W. Anal. Chem., 2019, 91(5):3215-3220.

    34. [34]

      SANTOS I C, BRODBELT J S. J. Am. Soc. Mass Spectrom., 2021, 32(6):1370-1379.

    35. [35]

      LI X Y, LI Z X, XIE B E, SHARP J S. J. Am. Soc. Mass Spectrom., 2015, 26(8):1424-1427.

    36. [36]

      MEYER J G, KOMIVES E A. J. Am. Soc. Mass Spectrom., 2012, 23(8):1390-1399.

    37. [37]

      ZHANG J, LOO R O, LOO J A. Int. J. Mass Spectrom., 2015, 377(1):546-556.

    38. [38]

      WANSEELE Y V, BONGAERTSA J, SEGERSA K, VIAENEB J, BUNDELA D D, HEYDEN Y V, SMOLDERSA I, EECKHAUT A V. Talanta, 2019, 198:206-214.

    39. [39]

      VALEJA S G, KAISER N K, XIAN F, HENDRICKSON C L, ROUSE J C, MARSHALL A G. Anal. Chem., 2011, 83(22):8391-8395.

    40. [40]

      COMPTON P D, ZAMDBORG L, THOMAS P M, KELLEHER N L. Anal. Chem., 2011, 83(17):6868-6874.

    41. [41]

      MIRZA U A, CHAIT B T. Int. J. Mass Spectrom. Ion Processes, 1997, 162(1-3):173-181.

    42. [42]

      GOING C C, XIA Z J, WILLIAMS E R. Analyst, 2015, 140(21):7184-7194.

    43. [43]

      SHERLING H J, CASSOU C A, TRNKA M J, BURLINGAME A L, KRANTZ B A, WILLIAMS E R. Phys. Chem. Chem. Phys., 2011, 13(41):18288-18296.

    44. [44]

      SHERLING H J, WILLIAMS E R. Anal. Chem., 2010, 82(21):9050-9057.

    45. [45]

      SHERLING H J, DALY M P, FELD G K, THOREN K L, KINTZER A F, KRANTZ B A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2010, 21(10):1762-1774.

    46. [46]

      SHERLING H J, PRELL J S, CASSOU C A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2011, 22(7):1178-1186.

    47. [47]

      CASSOU C A, WILLIAMS E R. Anal. Chem., 2014, 86(3):1640-1647.

    48. [48]

      MORTENSEN D N, WILLIAMS E R. Analyst, 2016, 141(19):5598-5606.

    49. [49]

      MORTENSEN D N, WILLIAMS E R. J. Am. Chem. Soc., 2016, 138(10):3453-3460.

    50. [50]

      MORTENSEN D N, WILLIAMS E R. Anal. Chem., 2016, 88(19):9662-9668.

    51. [51]

      MARK L P, GILL M C, MAHUT M, DERRICK P J. Eur. J. Mass Spectrom., 2012, 18(5):439-446.

    52. [52]

      FISHER C M, KHARLAMOVA A, MCLUCKEY S A. Anal. Chem., 2014, 86(9):4581-4588.

    53. [53]

      ZHAO F F, MATT S M, BU J X, REHRAUER O G, BEN-AMOTZ D, MCLUCKEY S A. J. Am. Soc. Mass Spectrom., 2017, 28(10):2001-2010.

    54. [54]

      CAVANAGH J, BENSON L M, TOMPSON R, NAYLOR S. Anal. Chem., 2003, 75(14):3281-3286.

    55. [55]

      WILSON D J, KONERMANN L. Anal. Chem., 2005, 77(21):6887-6894.

    56. [56]

      NGUYEN G T, TRAN T N, PODGORSKI M N, BELL S G, SUPURAN C T, DONALD W A. ACS Cent. Sci., 2019, 5(2):308-318.

    57. [57]

      GONG X Y, XIONG X C, ZHAO Y C, YE S J, FANG X. Anal. Chem., 2017, 89(13):7009-7016.

    58. [58]

      GONG X Y, LI C, ZHAI R, XIE J, JIANG Y, FANG X. Anal. Chem., 2019, 91(3):1826-1837.

    59. [59]

      FENG L L, GONG X Y, SONG J F, ZHAI R, HUANG Z J, FANG X, DAI X H. Anal. Chem., 2020, 92(2):1770-1779.

    60. [60]

      KONERMANN L. J. Am. Soc. Mass Spectrom., 2017, 28(9):1827-1835.

    61. [61]

      KONERMANN L, METWALLY H, DUEZ Q, PETER I. Analyst, 2019, 144(21):6157-6171.

    62. [62]

      RAHMAN M M, CHEN L C. Anal. Chim. Acta, 2018, 1021:78-84.

    63. [63]

      YIN Z B, HUANG J, MIAO H, HU O, LI H L. Anal. Chem., 2020, 92(18):12312-12321.

    64. [64]

      BOUZA M, LI Y F, WU C S, GUO H Y, FERNANDEZ F M. J. Am. Soc. Mass Spectrom., 2020, 31(3):727-734.

  • 加载中
    1. [1]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    2. [2]

      Ying Yang Yonghan Wu Zixuan Li Lu Zhang Rongqin Lin Yefan Zhang Jiquan Liu Xiaohui Ning Yan Li Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024

    3. [3]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    4. [4]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    6. [6]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Hui ZhangZijian ZhaoYajing WangKai NiYanfei WangLiang ZhuJianyun LiuXiaoyu Zhao . Structurally engineered solvent-free LiFePO4 electrodes via hot-pressing with efficient ion transport pathways for lithium extraction from brine. Acta Physico-Chimica Sinica, 2026, 42(2): 100130-0. doi: 10.1016/j.actphy.2025.100130

    8. [8]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    9. [9]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    10. [10]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    11. [11]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    12. [12]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    13. [13]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    14. [14]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    15. [15]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    16. [16]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    17. [17]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    18. [18]

      Liqiang Huang Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074

    19. [19]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    20. [20]

      Fengmei Wang Xin Zhang Hong Yan Xiangyu Xu Guirong Wang . Inverted 'Π' Graphic Memory Method for Thermodynamic Basic Equations and the Application in Teaching Practice. University Chemistry, 2025, 40(11): 369-375. doi: 10.12461/PKU.DXHX202412087

Metrics
  • PDF Downloads(19)
  • Abstract views(1398)
  • HTML views(276)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return