Citation: CHEN Mei-Jun,  LIU Ya-Lan,  WANG Ying,  GE Zhi-Qi,  ZHANG Xiu-Hua,  WANG Sheng-Fu,  HE Han-Ping. A Novel Ratiometric Electrochemical Biosensor for Detection of BCR/ABL Fusion Gene[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 692-700. doi: 10.19756/j.issn.0253-3820.210477 shu

A Novel Ratiometric Electrochemical Biosensor for Detection of BCR/ABL Fusion Gene

  • Corresponding author: HE Han-Ping, hehanping@hubu.edu.cn
  • Received Date: 30 April 2021
    Revised Date: 28 January 2022

    Fund Project: Supported by the Open Project Funding of the State Key Laboratory of Biocatalysis and Enzyme Engineering (No.SKLBEE2020016) and the National Natural Science Foundation of China (Nos.52171177, 21575035).

  • An ultrasensitive ratiometric electrochemical biosensor was developed for detection of BCR/ABL fusion gene relied on Prussian blue (PB) and thionine (Thi) as double signals. Exonucleases Ⅲ (Exo Ⅲ)-assisted target recycling and hybrid chain reaction (HCR) signal amplification strategies were applied. Above all, the PB film was formed on the electrode surface by controlled potential electrolysis. Exo Ⅲ-assisted target recycling was operated onto the hairpin DNA, which included the specific recognition fragment of BCR/ABL fusion genes according to target DNA-triggered exonuclease reaction, and release of the hairpin fragment. The released hairpin fragments were captured on PB film-modified electrode for further amplification of HCR signal with Help-DNA, AD1 and AD2, which induced the formation of a typical linear DNA concatamers with Y-shaped structure. The formed concatamers were bound with Thi based on electrostatic interaction for second important electrochemical response. The signal ratio (IT/IP) of Thi and PB showed an excellent linearity with BCR/ABL fusion gene (lg(IT/IP)=1.094 × lgC+0.1557) in the concentration range of 1 pmol/L-100 nmol/L with a detection limit (S/N=3) of 0.19 pmol/L. The developed ratiometric genosensor provided a simple and feasible strategy for diagnosis and prognosis of chronic myeloid leukemia (CML).
  • 加载中
    1. [1]

      FIALKOW P J, GARTLER S M, YOSHIDA A. Proc. Natl. Acad. Sci. U.S.A., 1967, 58(4):1468-1471.

    2. [2]

      KANTARJIAN H M, DEISSEROTH A, KURZROCK R, ESTROV Z, TALPAZ M. Blood, 1993, 82(3):691-703.

    3. [3]

      DALEY G Q, VANETTEN R A, BALTIMORE D. Science, 1990, 247(4944):824-830.

    4. [4]

      LIN X H, WU P, CHEN W, ZHANG Y F, XIA X H. Talanta, 2007, 72(2):468-471.

    5. [5]

      KANTARJIAN H M, KEATING M J, TALPAZ M, WALTERS R S, SIMTH T L, CORK A, MCCREDIE K B, FREIREICH E J. Am. J. Med., 1987, 83(3):445-454.

    6. [6]

      HAMBLIN T J. Leuk. Res., 2002, 26(6):607-609.

    7. [7]

      LANDSTROM A P, TEFFERI A. Leuk. Lymphoma, 2006, 47(3):397-402.

    8. [8]

      MVLLER C, HENNIG E, FRANKE C, KRAHL R, LEIBLEIN S, NIEDERWIESER D, DEININGER M W. Cancer Genet. Cytogenet., 2002, 136(2):149-150.

    9. [9]

      CORRENTE F, BELLESI S, METAFUNI E, PUGGIONI P L, MARIETTI S, CIMINELLO A M, ZA T, SORA F, FIANCHI L, SICA S, STEFANO V D, CHIUSOLO P. Cytometry, Part B, 2018, 94(3):468-476.

    10. [10]

      VROTSOS E, GORGAN M, DIGIUSEPPE J A. Cytometry, Part B, 2018, 92(4):275-278.

    11. [11]

      WU J L, HUANG Y, BIAN X, LI D, CHENG Q, DING S. Opt. Commun., 2016, 377:24-32.

    12. [12]

      XU Y, BIAN X, SANG Y, LI Y, LI D, CHENG W, YIN Y, JU H, DING S. Sci. Rep., 2016, 6:32370.

    13. [13]

      GULATI P, KAUR P, RAJAM M V, SRIVASTAVA T, ALI M A, MISHRA P, ISLAM S S. Sens. Actuators, B, 2018, 270:45-55.

    14. [14]

      GHOLIVAND M B, AKBARI A. Biosens. Bioelectron., 2019, 129:182-188.

    15. [15]

      CIFTCI S, CANOVAS R, NEUMANN F, PAULRAJ T, NILSSON M, CRESPO G A, MADABOOSI N. Biosens. Bioelectron., 2020, 151:112002.

    16. [16]

    17. [17]

      GE L, WANG W, LI F. Anal. Chem., 2017, 89(21):11560-11567.

    18. [18]

      GAI P P, GU C C, LI H Y, SUN X Z, LI F. Anal. Chem., 2017, 89(22):12293-12298.

    19. [19]

      ZHU L P, ZHANG M Q, YE J, YAN M X, ZHU Q J, HUANG J S, YANG X R. Anal. Chem., 2020, 92(12):8614-8622.

    20. [20]

      ZHAO L, SUN R J, HE P, ZHANG X R. Anal. Chem., 2019, 91(22):14773-14779.

    21. [21]

      ZHANG W, LIU C, HAN K, WEI X O, XU Y W, ZHOU X B, ZHANG H, CHEN Z Y. Biosens. Bioelectron., 2020, 154:112091.

    22. [22]

      GE L, WANG W X, SUN X M, HOU T, LI F. Anal. Chem., 2016, 88(4):2212-2219.

    23. [23]

      MIAO J C, DU K, LI X, XU X T, DONG X, FANG J L, CAO W, WEI Q. Biosens. Bioelectron., 2021, 171:112713.

    24. [24]

      CUI L, LU M F, LI Y, TANG B, ZHANG C Y. Biosens. Bioelectron., 2018, 102:87-93.

    25. [25]

      LI Y R, CHANG Y Y, MA J, WU Z Y, YUAN R, CHAI Y Q. Anal. Chem., 2019, 91(9):6127-6133.

    26. [26]

      HU R, ZHANG X, CHI K N, YANG T, YANG Y H. ACS Appl. Mater. Interfaces, 2020, 12(27):30770-30778.

    27. [27]

      LI J, LIU Y L, ZHU X Q, CHANG G, HE H P, ZHANG X H, WANG S F. ACS Appl. Mater. Interfaces, 2017, 9(50):44231-44240.

    28. [28]

      LIU Y L, GE Z Q, CHEN M J, HE H P, ZHANG X H, WANG S F. Biosens. Bioelectron., 2019, 142:111537.

    29. [29]

      JIN H, GUI R J, YU J B, LV W, WANG Z H. Biosens. Bioelectron., 2017, 91:523-537.

    30. [30]

      ZHAO C Q, JIN H, GUI R J, WANG Z H. Sens. Actuators, B, 2017, 242:71-78.

    31. [31]

      YU J B, JIN H, GUI R J, WANG Z H, GE F. Talanta, 2017, 162:435-439.

    32. [32]

      JIANG J, WU H Y, SU Y, LIANG Y, SHU B W, ZHANG C S. Anal. Chem., 2020, 92(11):7708-7716.

    33. [33]

      YUAN Y L, HU T, ZHONG X, ZHU M H, CHAI Y Q, YUAN R. ACS Appl. Mater. Interfaces, 2020, 12(20):22624-22629.

    34. [34]

      GUO Q Q, YU Y Q, ZHANG H, CAI C X, SHEN Q M. Anal. Chem., 2020, 92(7):5302-5310.

    35. [35]

      WANG J R, XIA C, YANG L, LI Y F, LI C M, HUANG C Z. Anal. Chem., 2020, 92(5):4046-4052.

    36. [36]

      BI S, YUE S Z, ZHANG S S. Chem. Soc. Rev., 2017, 46(14):4281-4298.

    37. [37]

      FENG C R, ZHANG C, GUO J X, LI G P, YE B X, ZOU L N. Anal. Chim. Acta, 2021, 1158:338413.

  • 加载中
    1. [1]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    8. [8]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    9. [9]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    10. [10]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    11. [11]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    12. [12]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    13. [13]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    20. [20]

      Qingtao Niu Xinyao Xu Weiyue Yu Shuxiang Meng Zhiguo Lv Manman Jin . Exploration and Practice of Science-Education Integration in Chemical Engineering Thermodynamics Teaching for Chemical Engineering Majors: A Case of Chemical Engineering Physical Property Data Estimation and Chemical Reaction Equilibrium. University Chemistry, 2025, 40(10): 1-9. doi: 10.12461/PKU.DXHX202412029

Metrics
  • PDF Downloads(10)
  • Abstract views(885)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return