Citation: MA Yi,  QI Xie-Min,  WU Hai-Ping,  MA Xue-Ping,  CHU Ya-Nan,  WANG Xue-Mei,  ZHOU Guo-Hua. Research Progress in Paper-based Biosensors for Pathogen Nucleic Acids[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 1945-1954. doi: 10.19756/j.issn.0253-3820.210465 shu

Research Progress in Paper-based Biosensors for Pathogen Nucleic Acids

  • Corresponding author: ZHOU Guo-Hua, ghzhou@nju.edu.cn
  • Received Date: 25 April 2021
    Revised Date: 20 June 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.61871403), the Jiangsu Provincial Science Fund for Distinguished Young Scholars (No.BK20180005) and the Jiangsu Provincial Medical Youth Talent Program (Nos.QNRC2016889, QNRC2016845).

  • Infectious diseases caused by pathogens seriously threaten human life and health. Rapid and accurate detection of pathogens is an important prerequisite for effective prevention and control of infectious diseases. However, traditional methods for detection of pathogen nucleic acid often require professional personnel and specialized instruments and equipments, which challenges the realization of field detection of pathogen. Using paper as matrix to construct biosensor has the advantages of light and portable, low cost and intuitive results, and is suitable for rapid detection of pathogens in the field by combining with nucleic acid amplification method. Currently, the paper-based pathogen nucleic acid detection technique mainly includes two types:lateral flow strips and paper-based microfluidic devices. Here, antibody-dependent and antibody-independent lateral flow strips, two- and three-dimensional paper-based microfluidic devices and fabrication techniques are reviewed, and the strategies of developing paper-based integrated devices for nucleic acid extraction, amplification and detection of pathogens are introduced, which can provide a reference for the development of new techniques for the field detection of pathogens.
  • 加载中
    1. [1]

      CHOI Y J, HWANG J H, LEE S Y. Small Methods, 2018, 2(4):1700351.

    2. [2]

      ZHOU P, YANG X L, WANG X G, HU B, ZHANG L, ZHANG W, SI H R, ZHU Y, LI B, HUANG C L, CHEN H D, CHEN J, LUO Y, GUO H, JIANG R D, LIU M Q, CHEN Y, SHEN X R, WANG X, ZHENG X S, ZHAO K, CHEN Q J, DENG F, LIU L L, YAN B, ZHAN F X, WANG Y Y, XIAO G F, SHI Z L. Nature, 2020, 579(7798):270-273.

    3. [3]

      CHAN J F, YUAN S, KOK K H, TO K K, CHU H, YANG J, XING F, LIU J, YIP C C, POON R W, TSOI H W, LO S K, CHAN K H, POON V K, CHAN W M, IP J D, CAI J P, CHENG V C, CHEN H, HUI C K, YUEN K Y. Lancet, 2020, 395(10223):514-523.

    4. [4]

      ZHU N, ZHANG D, WANG W, LI X, YANG B, SONG J, ZHAO X, HUANG B, SHI W, LU R, NIU P, ZHAN F, MA X, WANG D, XU W, WU G, GAO G F, TAN W. N. Engl. J. Med., 2020, 382(8):727-733.

    5. [5]

      WANG C, HORBY P W, HAYDEN F G, GAO G F. Lancet, 2020, 395(10223):470-473.

    6. [6]

      JIANG S, SHI Z, SHU Y, SONG J, GAO G F, TAN W, GUO D. Lancet, 2020, 395(10228):949.

    7. [7]

      ZOUMPOURLIS V, GOULIEMAKI M, RIZOS E, BALIOU S, SPANDIDOS D A. Mol. Med. Rep., 2020,22(4):3035-3048.

    8. [8]

      DAWOOD F S, JAIN S, FINELLI L, SHAW M W, LINDSTROM S, GARTEN R J, GUBAREVA L V, XU X, BRIDGES C B, UYEKI T M. N. Engl. J. Med., 2009, 360(25):2605-2615.

    9. [9]

      ZHONG N S, ZHENG B J, LI Y M, POON L L M, XIE Z H, CHAN K H, LI P H, TAN S Y, CHANG Q,XIE J P, LIU X Q, XU J, LI D X,YUEN K Y, PEIRIS J S M, GUAN Y. Lancet, 2003, 362(9393):1353-1358.

    10. [10]

      DWIVEDI H P, JAYKUS L A. Crit. Rev. Microbiol., 2011, 37(1):40-63.

    11. [11]

      STEPHANIE D G, KRUTI R P. J. Invest. Dermatol., 2013, 133(e12):1-3.

    12. [12]

      SALLY A B, MICHAEL C, MICHA N. Transfus. Med. Hemother., 2015, 42(4):211-218.

    13. [13]

      KLING C E, PERKINS J D, LANDIS C S, LIMAYE A P, SIBULESKY L. Am. J. Transplant., 2017, 17(11):2863-2868.

    14. [14]

      CHEN H, LIU K K, LI Z, WANG P. Clin. Chim. Acta, 2019, 493:138-147.

    15. [15]

      PEAPER D R, DURANT T, CAMPBELL S. Clin. Lab Med., 2019, 39(3):419-431.

    16. [16]

      POSCHENRIEDER A, THALER M, JUNKER R, LUPPA P B. Anal. Bioanal. Chem., 2019, 411(29):7607-7621.

    17. [17]

      MARTINEZ A W, PHILLIPS S T, BUTTE M J, WHITESIDES G M. Angew. Chem., Int. Ed., 2007, 46(8):1318-1320.

    18. [18]

      CATE D M, ADKINS J A, METTAKOONPITAK J, HENRY C S. Anal. Chem., 2015, 87(1):19-41.

    19. [19]

      YETISEN A K, AKRAM M S, LOWE C R. Lab Chip, 2013, 13:2210-2251.

    20. [20]

      BAHADIR E B, SEZGINTURK M K. TrAC-Trends Anal. Chem., 2016, 82:286-306.

    21. [21]

      BATULE B S, SEOK Y, KIM M G. Biosens. Bioelectron., 2020, 151:111998.

    22. [22]

      JIANG X, LOEB J C, PAN M, FAN Z H. Anal. Chim. Acta, 2021, 1165:338542.

    23. [23]

      LEUVEING J H, THAL P J, VAN DER WAART M, SCHUURS A H. J. Immunol. Methods, 1981, 45:183-194.

    24. [24]

      KAINZ D M, FRVH S M, HUTZENLAUB T, ZENGERLE R, PAUST N. Lab Chip, 2019, 19(16):2718-2727.

    25. [25]

      KIM S H, LEE J, LEE B H, SONG C S, GU M B. Biosens. Bioelectron., 2019, 134:123-129.

    26. [26]

      WANG X K, WANG X D, SHI C, MA C P, CHEN L X. Talanta, 2020, 216:120978.

    27. [27]

    28. [28]

      LUO K, KIM H Y, OH M H, KIM Y R. Crit. Rev. Food Sci. Nutr., 2020, 60(1):157-170.

    29. [29]

      TAKABATAKE R, KAGIYA Y, MINEGISHI Y, FUTO S, SOGA K, NAKAMURA K, KONDO K, MANO J, KITTA K. J. Agric. Food Chem., 2018, 66(29):7839-7845.

    30. [30]

      YANG M, MUDABUKA B, QUIZON K, NFON C. Transbound. Emerg. Dis., 2019, 66(3):1158-1166.

    31. [31]

      JUNG J H, OH S J, KIM Y T, KIM S Y, KIM W J, JUNG J, SEO T S. Anal. Chim. Acta, 2015, 853:541-547.

    32. [32]

      HUANG P, WANG H, CAO Z, JIN H, CHI H, ZHAO J, YU B, YAN F, HU X, WU F, JIAO C, HOU P, XU S, ZHAO Y, FENG N, WANG J, SUN W, WANG T, GAO Y, YANG S, XIA X. Front. Microbiol., 2018, 9:1101-1110.

    33. [33]

      GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, JOUNG J, COLLINS J J, ZHANG F. Science, 2018, 360(6387):439-444.

    34. [34]

      MYHRVOLD C, FREIJE C A, GOOTENBERG J S, ABUDAYYEH O O, METSKY H C, DURBIN A F, KELLNER M J, TAN A L, PAUL L M, PARHAM L A, GARCIA K F, BARNES K G, CHAK B, MONDINI A, NOGUEIRA M L, ISERN S, MICHAEL S F, LORENZANA I, YOZWIAK N L, MACINNIS B L, BOSCH I, GEHRKE L, ZHANG F, SABETI P C. Science, 2018, 360(6387):444-448.

    35. [35]

      ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, JOUNG J, SLAYMAKER I M, COX D B T, SHMAKOV S, MAKAROVA K S, SEMENOVA E, MINAKHIN L, SEVERINOV K, REGEV A, LANDER E S, KOONIN E V, ZHANG F. Science, 2016, 353(6299):aaf5573.

    36. [36]

      SMARGON A A, COX D B T, PYZOCHA N K, ZHENG K, SLAYMAKER I M, GOOTENBERG J S, ABUDAYYEH O A, ESSLETZBICHLER P, SHMAKOV S, MAKAROVA K S, KOONIN E V, ZHANG F. Mol. Cell, 2017, 65(4):618-630.

    37. [37]

      CHEN J S, MA E, HARRINGTON L B, COSTA M D, TIAN X R, PALEFSKY J M, DOUDNA J A. Science, 2018, 360(6387):436-439.

    38. [38]

      BROUGHTON J P, DENG X, YU G, FASCHING C L, SERVELLITA V, SINGH J, MIAO X, STREITHORST J A, GRANADOS A, SOTOMAYOR GONZALEZ A, ZOM K, GOPEZ A, HSU E, GU W, MILLER S, PAN C Y, GUEVARA H, WADFORD D A, CHEN J S, CHIU C Y. Nat. Biotechnol., 2020, 38(7):870-874.

    39. [39]

      ZHANG F, ABUDAYYEH O O, GOOTENBERG J S. (2020-03-21)[2021-04-24], https://broad.io/sherlockprotocol.

    40. [40]

      PATCHSUNG M, JANTARUG K, PATTAMA A, APHICHO K, SURARITDECHACHAI S, MEESAWAT P, SAPPAKHAW K, LEELAHAKORN N, RUENKAM T, WONGSATIT T, ATHIPANYASILP N, EIAMTHONG B, LAKKANASIRORAT B, PHOODOKMAI T, NILJIANSKUL N, PAKOTIPRAPHA D, CHANARAT S, HOMCHAN A, TINIKUL R, KAMUTIRA P, PHIWKAOW K, SOITHONGCHAROEN S, KANTIWIRIYAWANITCH C, PONGSUPASA V, TRISRIVIRAT D, JAROENSUK J, WONGNATE T, MAENPUEN S, CHAIYEN P, KAMNERDNAKTA S, SWANGSRI J, CHUTHAPISITH S, SIRIVATANAUKSORN Y, CHAIMAYO C, SUTTHENT R, KANTAKAMALAKUL W, JOUNG J, LADHA A, JIN X, GOOTENBERG J S, ABUDAYYEH O O, ZHANG F, HORTHONGKHAM N, UTTAMAPINANT C. Nat. Biomed. Eng., 2020, 4(12):1140-1149.

    41. [41]

      AVEYARD J, MEHRABI M, COSSINS A, BRAVEN H, WILSON R. Chem. Commun., 2007, (41):4251-4253.

    42. [42]

      MONDEN Y, TAKASAKI K, FUTO S, NIWA K, KAWASE M, AKITAKE H, TAHARA M. J. Biotechnol., 2014, 185:57-62.

    43. [43]

      TIAN L Y, SATO T, NIWA K, KAWASE M, TANNER A C R, NOBUHIRO T. BioMed. Res. Int., 2014, 2014:180323.

    44. [44]

      TAKAEADA Y, KODERA T, KOBAYASHI K, NAKAJIMA C, KAWASE M, SUZUKI Y. J. Microbiol. Methods, 2020, 177:106062.

    45. [45]

      YANG Y, NOVIANA E, NGUYEN M P, GEISS B J, DANDY D S, HENRY C S. Anal. Chem., 2017, 89(1):71-91.

    46. [46]

      CATE D M, ADKINS J A, METTAKOONPITAK J, HENRY C S. Anal. Chem., 2015, 87(1):19-41.

    47. [47]

      CHINNADAYYALA S R, PARK J, LE H T N, SANTHOSH M, KADAM A N, CHO S. Biosens. Bioelectron., 2019, 126:68-81.

    48. [48]

      BEDIN F, BOULET L, VOILIN E, THEILLET G, RUBENS A, ROZAND C. J. Med. Virol., 2017, 89(9):1520-1527.

    49. [49]

      HU J, WANG S Q, WANG L, LI F, PINGGUAN-MURPHY B, LU T J, XU F. Biosens. Bioelectron., 2014, 54:585-597.

    50. [50]

      WHITESIDES G M. Nature, 2006, 442(7101):368-373.

    51. [51]

      REN K, ZHOU J, WU H. Acc. Chem. Res., 2013, 46(11):2396-406.

    52. [52]

      NOVIANA E, MCCORD C P, CLARK K M, JANG I, HENRY C S. Lab Chip, 2020, 20(1):9-34.

    53. [53]

      HORST A L, ROSENBOHM J M, KOLLURI N, HARDICK J, GAYDOS C A, CABODI M, KLAPPERICH C M, LINNES J C. Biomed. Microdevices, 2018, 20(2):35-49.

    54. [54]

      LI X, BALLERINI D R, SHEN W. Biomicrofluidics, 2012, 6(1):011301.

    55. [55]

      MORBIOLI G G, MAZZU-NASCIMENTO T, STOCKTON A M, CARRILHO E. Anal. Chim. Acta, 2017, 970:1-22.

    56. [56]

      MORA M F, GARCIA C D, SCHAUMBURG F, KLER P A, BERLI C L A, HASHIMOTO M, CARRILHO E. Anal. Chem., 2019, 91(13):8298-8303.

    57. [57]

      ASANO H, SHIRAISHI Y. Anal. Chim. Acta, 2015, 883:55-60.

    58. [58]

      RAJ N, BREEDVELD V, HESS D W. Lab Chip, 2019, 19(19):3337-3343.

    59. [59]

      DE OLIVEIRA T R, FONSECA W T, DE OLIVEIRA SETTI G, FARIA R C. Talanta, 2019, 195:480-489.

    60. [60]

      GHOSH R, GOPALAKRISHNAN S, SAVITHA R, RENGANATHAN T, PUSHPAVANAM S. Sci. Rep., 2019, 9:7896.

    61. [61]

      CHIANG C K, KURNIAWAN A, KAO C Y, WANG M J. Talanta, 2019, 194:837-845.

    62. [62]

      DUNGCHAI W, CHAILAPAKUL O, HENRY C S. Analyst, 2011, 136(1):77-82.

    63. [63]

      SONGOK J, TOIVAKKA M. ACS Appl. Mater. Interfaces, 2016, 8(44):30523-30530.

    64. [64]

      ROBERT B C, MICHAEL P N, ALEXIS G S, ELIJAH M H, JOHN V, DAVID S D, CHARLES S H. Lab Chip, 2018, 18:793-802.

    65. [65]

      SOUM V, PARK S, BRILIAN A I, CHOI J Y, LEE Y W, KIM W J, KWONA O S, SHIN K. Lab Chip, 2020, 20:1601-1611.

    66. [66]

      KAARJ K, AKARAPIPAD P, YOON J Y. Sci. Rep., 2018, 8:21438.

    67. [67]

      KAUSHIK A, TIWARI S, DEV JAYANT R, NAIR M. Biosens. Bioelectron., 2016, 75:254-272.

    68. [68]

      XIA Y, SI J, LI Z. Biosens. Bioelectron., 2016, 77:774-789.

    69. [69]

      TEENGAM P, SIANGPROH W, TUANTRANONT A, VILAIVAN T, CHAILAPAKUL O, HENRY C S. Anal. Chem., 2017, 89(10):5428-5435.

    70. [70]

      CHOI J R, HU J, TANG R H, GONG Y, FENG S S, REN H, WEN T, LI X, ABAS W A B W, MURPHY B P, XU F. Lab Chip, 2016, 16:611-621.

    71. [71]

      RODRIGUEZ N M, WONG W S, LIU L, DEWAR R, KLAPPERICH C M. Lab Chip, 2016, 16:753-763.

    72. [72]

      XU G L, NOLDER D, REBOUD J, OGUIKE M C, SCHALKWYK D A, SUTHERLAND C J, COOPER J M. Angew. Chem., Int. Ed., 2016, 55(49):15250-15253.

    73. [73]

      REBOUD J, XU G L, GARRETT A, ADRIKO M, YANG Z G, TUKAHEBWA E M, ROWELL C, COOPER J M. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(11):4834-4842.

    74. [74]

      MAGRO L, JACQUELIN B, ESCADAFAL C, GARNERET P, KWASIBORSKI A, MANUGUERRA J C, MONTI F, SAKUNTABHAI A, VANHOMWEGEN J, LAFAYE P. Sci. Rep., 2017, 7:1347.

    75. [75]

      AHN H, BATULE B S, SEOK Y, KIM M G. Anal. Chem., 2018, 90(17):10211-10216.

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    3. [3]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    4. [4]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    5. [5]

      Ruihu Wang Aidang Lu . 新型铬(VI)检测试纸的制备及应用——介绍一个应用化学综合实验. University Chemistry, 2025, 40(8): 284-290. doi: 10.12461/PKU.DXHX202410102

    6. [6]

      Jianfu Zhang Wei Bai Juan Hou Chenyang Zou . Reform and Practice of “Project-Patent- Scholarly Paper” Integrated Teaching Mode: Taking “Polymer Processing” Course as an Example. University Chemistry, 2025, 40(4): 138-146. doi: 10.12461/PKU.DXHX202408138

    7. [7]

      Zhixin Zhou Ran Chen Yuanjian Zhang Songqin Liu Yanfei Shen . 分析化学课程本硕一体化的全英文教学改革. University Chemistry, 2025, 40(6): 64-70. doi: 10.12461/PKU.DXHX202407093

    8. [8]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    9. [9]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    10. [10]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    11. [11]

      Yongmei Chen Lidan Zhang Shunlai Li Chunting Zhang Meng Cui Qinghong Xu Lan Jin Chunchuang Li Zhi Lv . Development of a National First-Class Course of “University Chemistry Experiment” Based on MOOCs. University Chemistry, 2024, 39(7): 8-12. doi: 10.3866/PKU.DXHX202404017

    12. [12]

      Fan Yu Aihua Li Yun Liu Tianrong Zhu Liang Wang Junhui Xu Yazhen Wang . Exploration and Practice in Developing a Premier Course in Inorganic and Analytical Chemistry. University Chemistry, 2024, 39(8): 36-43. doi: 10.3866/PKU.DXHX202312037

    13. [13]

      Shuyong Zhang Wenfeng Jiang Changsheng Lu Genrong Qiang Yongmei Liu Xiangyang Tang Dongcheng Liu Lili Zhang . Suggestions on Construction and Evaluation Standards for First-Class Chemical Experiment Teaching. University Chemistry, 2025, 40(5): 9-14. doi: 10.12461/PKU.DXHX202502114

    14. [14]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    15. [15]

      Yue Zhang Chengxin Shang Caihong Zhang Jikai Pei Lihong Shi Pengfei Gao Zhiqi Jia Songbai Wang Junsheng Hao Guomei Zhang Wei Guo . Reforms and Practices of the Chemistry Experimental Teaching Demonstration Center under the Background of National First-Class Major Construction. University Chemistry, 2024, 39(7): 207-210. doi: 10.12461/PKU.DXHX202405134

    16. [16]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    17. [17]

      Yuan Zhuang Wenhui Li Jie Li . Curriculum Reform of “Chemical Composition Analysis of Materials” under Background of First-Class Discipline Construction. University Chemistry, 2025, 40(5): 283-290. doi: 10.12461/PKU.DXHX202407070

    18. [18]

      Dongyan Tang Yanqiu Jiang Su'e Hao Yunchen Du Lizhu Zhang Zhigang Liu . 融合优势资源与聚焦多元培养的非化类大学化学一流课程建设. University Chemistry, 2025, 40(6): 71-76. doi: 10.12461/PKU.DXHX202406062

    19. [19]

      Yaoyue Yang Weishang Jia Zhaoxia Ma Xiaole Jiang Yajuan Wu . Innovative Teaching Design and Practice of a Blended First-Class Course on “Physical Chemistry Experiment” in Ethnic Universities. University Chemistry, 2025, 40(7): 71-78. doi: 10.12461/PKU.DXHX202409118

    20. [20]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

Metrics
  • PDF Downloads(12)
  • Abstract views(844)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return