Citation: YAO Meng-Ting,  QI Kai-Li,  MEI Zheng-Fang,  CHEN Rong-Sheng. Fabrication of Carbon Quantum Dots Decorated TiO2 Nanotube Arrays for Photoelectrochemical Determination of 5-Hydroxytryptamine[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2005-2014. doi: 10.19756/j.issn.0253-3820.210432 shu

Fabrication of Carbon Quantum Dots Decorated TiO2 Nanotube Arrays for Photoelectrochemical Determination of 5-Hydroxytryptamine

  • Corresponding author: CHEN Rong-Sheng, chenrs@wust.edu.cn
  • Received Date: 12 April 2021
    Revised Date: 2 September 2021

    Fund Project: Supported by the National Key R&D Program of China (No.2020YFC1909702).

  • A novel photoelectrochemical (PEC) sensor was constructed based on carbon quantum dots decorated titanium dioxide nanotube arrays (TiO2 NTAs/CQDs). Highly ordered self-supporting titanium dioxide nanotube arrays (TiO2 NTAs) were prepared on the surface of a titanium foil by electrochemical anodization. The diameter and the length of TiO2 nanotube were around 80 nm and 8 μm, respectively. CQDs were prepared by electrochemical anodization of a graphite electrode, with a diameter of 3-9 nm. Uniformly distributed CQDs were decorated on the inner walls of TiO2 NTAs by hydrothermal treatment, examined by TEM observation. CQDs could effectively reduce the band gap of TiO2 NTAs and enhanced its response under visible light. CQDs were electron acceptors that could promote the separation of photo-generated electron-hole pairs. The conductance of TiO2 NTAs was also enhanced by CQDs decoration. Under visible light, TiO2 NTAs/CQDs exhibited excellent PEC response toward 5-hydroxytryptamine (5-HT), with a linear range of 20-300 μmol/L and a detection limit of 11.5 μmol/L (S/N=3). Moreover, the PEC sensor showed good selectivity and stability for determination of 5-HT and was successfully applied to determination of 5-HT in human serum.
  • 加载中
    1. [1]

      JONES L A, SUN E W, MARTIN A M, KEATING D J. Int. J. Biochem. Cell Biol., 2020, 125:105776.

    2. [2]

      MATYS J, GIEROBA B, JOZWIAK K. J. Pharmaceut. Biomed. Anal., 2020, 180:113079.

    3. [3]

      PARK S, KIM Y, LEE J, LEE J Y, KIM H, LEE S, OH C M. Int. J. Mol. Sci., 2021, 22(5):2452.

    4. [4]

      MICHELY J, ELDAR E, MARTIN I M, DOLAN R J. Nat. Commun., 2020, 11(1):2335.

    5. [5]

      CAI X, KALLARACKAL A J, KVARTA M D, GOLUSKIN S, GAYLOR K, BAILEY A M, LEE H K, HUGANIR R L, THOMPSON S M. Nat. Neurosci., 2013, 16(4):464-472.

    6. [6]

      OKATY B W, COMMONS K G, DYMECKI S M. Nat. Rev. Neurosci., 2019, 20(7):397-424.

    7. [7]

      HOYER D. Neuropharmacology, 2020, 179:108233.

    8. [8]

      SELVARJAN S, SUGANTHI A, RAJARAJAN M. Ultrason. Sonochem., 2018, 44:319-330.

    9. [9]

      PANHOLZER T J, BEYER J R, LICHTWALD K. Clin. Chem., 1999, 45(2):262-268.

    10. [10]

      COELHO A G, AGUIAR F P C, JESUS D P. J. Braz. Chem. Soc. 2014, 25(4):783-787.

    11. [11]

      LEI Y, YANG F, LI Y T, TANG L N, CHEN K L, ZHANG G J. Microchim. Acta, 2017, 184(7):2299-2305.

    12. [12]

      ZHANG C L, XU J Q, LI Y T, HUANG L, PANG D W, NING Y, HUANG W H, ZHANG Z Y, ZHANG G J. Anal. Chem., 2016, 88(7):4048-4054.

    13. [13]

      ZHAO W W, XU J J, CHEN H Y. Biosens. Bioelectron., 2017, 92:294-304.

    14. [14]

      ZANG Y, FAN J, JU Y, XUE H G, PANG H. Chem. Eur. J., 2018, 24(53):14010-14027.

    15. [15]

      FENG X, WEI Q, LI S, WEI X Z, YANG X F, SONG Z L, GENG B, LI Z J, ZHANG J, YAN M. Sens. Actuators, B, 2021, 330:129342.

    16. [16]

      ZHAO C Q, DING S N. Coordin. Chem. Rev., 2019, 391:1-14.

    17. [17]

      ZHANG R H, HU Q Z, KANG Q, QI L B, PANG Y P, YU L. Chin. J. Anal. Chem., 2021, 49(2):e21014-e21019.

    18. [18]

      KUMAR N, CHAUHAN N S, MITTAL A, SHARMA S. Biometals, 2018, 31(2):147-159.

    19. [19]

      MA X G, WANG C, WU F X, GUAN Y R, XU G B. Top. Curr. Chem., 2020, 378(2):28.

    20. [20]

      WANG W G, LIU Y, WU X, WANG J, FU L J, ZHU Y S, WU Y P, LIU X. Adv. Mater. Technol., 2018, 3(9):1800004.

    21. [21]

      LIU P P, LIU X Q, HUO X H, TANG Y F, XU J, JU H X. ACS Appl. Mater. Interfaces, 2017, 9(32):27185-27192.

    22. [22]

      PAN L, ZHOU Z W, LIU Y T, XIE X M. J. Mater. Chem. A, 2018, 6(16):7070-7079.

    23. [23]

      LEE K, YOON H, AHN C, PARK J, JEON S. Nanoscale, 2019, 11(15):7025-7040.

    24. [24]

      SU J Y, ZHU L, GENG P, CHEN G H. J. Hazard. Mater., 2016, 316(5):159-168.

    25. [25]

      SANG L X, LIN J, ZHAO Y B. Int. J. Hydrogen Energy, 2017, 42(17):12122-12132.

    26. [26]

      El-SHABASY R M, ELSADEK M F, AHMED B M, FARAHAT M F, MOSLEH K N, TAHER M M. Processes, 2021, 9(2):388.

    27. [27]

      ZHOU T S, CHEN S, LI L S, WANG J C, ZHANG Y, LI J H, BAI J, XIA L G, XU Q J, RAHIM M, ZHOU B X. Appl. Catal., B, 2020, 269:118776.

    28. [28]

      WANG Q, CAI J, BIESOLD-MCGEE G V, HUANG J Y, NG Y H, SUN H T, WANG J P, LAI Y K, LIN Z Q. Nano Energy, 2020, 78:105313.

    29. [29]

      AN Y R, TANG L L, JIANG X L, CHEN H, YANG M C, JIN L T, ZHANG S P, WANG C G, ZHANG W. Chem. Eur. J., 2010, 16(48):14439-14446.

    30. [30]

      ÇAKIROGIU B, ÖZACAR M. J. Electroanal. Chem. 2020, 878:114676.

    31. [31]

      TIAN J Y, LI Y, DONG J J, HUANG M J, LU J S. Biosens. Bioelectron., 2018, 110:1-7.

    32. [32]

      ARIFIN K, YUNUS R M, MINGGU L J, KASSIM M B. Int. J. Hydrogen Energy, 2021, 46(7):4998-5024.

    33. [33]

      CAMPOSECO R, CASTILLO S, NAVARRETE J, GOMEZ R. Catal. Today, 2016, 266:90-101.

    34. [34]

      ZUBAIR M, KIM H R, RAZZAQ A, GRIMES G A, IN S I. J. CO2 Util., 2018, 26:70-79.

    35. [35]

      LIU Y L, WAN L L, WANG J, CHENG L, CHEN R S, NI H W. Appl. Surf. Sci., 2020, 509:144679.

    36. [36]

      MING H, MA Z, LIU Y, PAN K M, YU H, WANG F, KANG Z H. Dalton Trans., 2012, 41(31):9526-9531.

    37. [37]

      YU X J, LIU J J, YU Y C, ZUO S L, LI B S. Carbon, 2014, 68:718-724.

    38. [38]

      DI G L, ZHU Z L, DAI Q, ZHANG H, SHEN X L, QIU Y L, HUANG Y Y, YU J N, KUPPERS S. Chem. Eng. J., 2020, 379:122296.

    39. [39]

      YU Z R, LIU H B, ZHU M Y, LI W X. Small, 2021, 17(9):1903378.

    40. [40]

      MAKUL P, PACIA M, MACYK W. J. Phys. Chem. Lett., 2018, 9:6814-6817.

    41. [41]

      PANDEY B, RANI S, ROY S C. J. Alloys Compd., 2020, 846:155881.

    42. [42]

      CHEN Y J, ZHANG S P, DAI H, HONG Z S, LIN Y Y. Biosens. Bioelectron., 2020, 148:111809.

    43. [43]

      CHEN Y J, ZHANG S P, HONG Z S, LIN Y Y, DAI H. J. Mater. Chem. B, 2019, 7:6972.

    44. [44]

      DAI H, ZHANG S P, HONG Z S, LI X H, XU G F, LIN Y Y. Anal. Chem., 2014, 86(13):6418-6424.

    45. [45]

      GAO B W, SUN M X, DING W, DING Z P, LIU W Z. Appl. Catal., B, 2021, 281:119492.

    46. [46]

      WANG C L, GAO W, LIU N Z, XIN Y, LIU X Y, WANG X T, TIAN Y, CHEN X W, HOU B R. Corros. Sci., 2020, 176:108920.

    47. [47]

      XIN Y M, LI Z Z, WU W L, FU B H, WU H J, ZHANG Z H. Biosens. Bioelectron., 2017, 87:396-403.

    48. [48]

      TERTIS M, CERNAT A, LACATIS D, FLOREA A, BOGDAN D, SUCIU M, SANDULESCU R, CRISTEA C. Electrochem. Commun., 2017, 75:43-47.

  • 加载中
    1. [1]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    2. [2]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    3. [3]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    4. [4]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    5. [5]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    6. [6]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    8. [8]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    9. [9]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    10. [10]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    11. [11]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    12. [12]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    15. [15]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    16. [16]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    17. [17]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    18. [18]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    19. [19]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    20. [20]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

Metrics
  • PDF Downloads(15)
  • Abstract views(1096)
  • HTML views(231)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return