Citation: LIU Lu-Ying,  LIU Jin-Hui,  HU Xiao-Gang. Dispersive Solid-Phase Extraction Technology Based on Aptamer Modified Composite Nanofibers and Its Application in Detection of Ochratoxin A[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2096-2105. doi: 10.19756/j.issn.0253-3820.201728 shu

Dispersive Solid-Phase Extraction Technology Based on Aptamer Modified Composite Nanofibers and Its Application in Detection of Ochratoxin A

  • Corresponding author: HU Xiao-Gang, huxg@scnu.edu.cn
  • Received Date: 4 December 2020
    Revised Date: 17 September 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21775048, 21275058), the Natural Science Foundation of Guangdong Province (No.2017A030313060), the Science and Technology Program of Guangzhou (No.2013B091500093), the Science and Technology Program of Guangzhou (No.201904010166) and Youth Innovation Talents Project of Colleges and Universities in Guangdong Province,China(No.2018KQNCX178).

  • The chitosan-sodium alginate composite nanofibers were prepared by freeze-drying. The nanofibers had a uniform filamentous structure with a width of about 0.4 μm. The aptamer of ochratoxin A was immobilized on the surface of the fiber by chemical bonding to obtain the aptamer-modified chitosan-sodium alginate composite nanofiber, and the bonding amount of the aptamer could reach 2.3 μg/mg. It could be used as an adsorbent for dispersive solid phase extraction technology. The adsorbent showed good extraction ability and high selectivity for ochratoxin A, the extraction capacity was about 3.1 ng/mg, and the extraction amount was 2.44-12.8 times of the structural analogue ochratoxin B and the five reference molecules. Compared with the composite nanofiber modified by the scrambled oligonucleotide and composite nanofiber, the extraction amount of ochratoxin A was increased by 4.88 and 13.0 times, respectively. Under the optimal extraction conditions, an analytical method based on aptamer modified composite nanofiber dispersion solid phase extraction-high performance liquid chromatography for determination of ochratoxin A was established. The linear range was 0.05-3.0 μg/L, the detection limit was 13 ng/L (S/N=3), and the recoveries of standard addition were 86.7%-101.0%. This method had good selectivity and high sensitivity, and could be applied to the detection of trace ochratoxin A in peanut, corn and wheat samples.
  • 加载中
    1. [1]

      LIAO I C, WAN A, YIM E, LEONG K W. J. Controlled Release, 2005, 104(2):347-358.

    2. [2]

      CHEN X, YE N. RSC Adv., 2017, 7(54):34077-34085.

    3. [3]

    4. [4]

      YING L L, MA Y C, XU B, WANG X H, DONG L Y, WANG D M, LIU K, XU L. J. Chromatogr. A, 2017, 1509:1-8

    5. [5]

      LIU L Y, MA Y X, ZHANG X T, YANG X, HU X G. Anal. Methods, 2020, 12(48):5852-5860.

    6. [6]

    7. [7]

      GUO X, YE T T, LIU L Y, HU X G. J. Sep. Sci., 2016, 39(8):1533-1541.

    8. [8]

    9. [9]

      SÆTHER H V, HOLME H K, MAURSTAD G, SMIDSRØD O, STOKKE B T. Carbohydr. Polym., 2008,74(4):813-821.

    10. [10]

      SANKALIA M G, MASHRU R C, SANKALIA J M, SUTARIYA V B. Eur. J. Pharm. Biopharm., 2007, 65(2):215-232.

    11. [11]

      TANG Z W, LIU X, WANG Y Y, CHEN Q, HAMMOCK B D, XU Y. Environ. Pollut., 2019, 251:238-245.

    12. [12]

      YANG Y J, ZHOU Y, XING Y, ZHANG G M, ZHANG Y, ZHANG C H, LEI P, DONG C, XU D, HE Y J, SHUANG S M. Talanta, 2019, 199:310-316.

    13. [13]

      FENG J H, LI Y Y, GAO Z Q, LV H, ZHANG X B, FAN D W, WEI Q. Biosens. Bioelectron., 2018, 99:14-20.

    14. [14]

    15. [15]

      ZHANG X B, ZHI H, ZHU M Z, WANG F Y, MENG H, FENG L. Biosens. Bioelectron., 2021, 180:113146.

    16. [16]

      WANG C Q, QIAN J, WANG K, YANG X W, LIU Q, HAO N, WANG C K, DONG X Y, HUANG X Y. Biosens. Bioelectron., 2016, 77:1183-1191.

    17. [17]

      KRISHNAN S K, SINGH E, SINGH P, MEYYAPPAN M, NALWA H S. RSC Adv., 2019, 9(16):8778-8881.

    18. [18]

      WANG Y H, SONG W,ZHAO H Y, MA X, YANG S Y, QIAO X J, SHENG Q L, YUE T L. Biosens. Bioelectron., 2021, 182:113171.

    19. [19]

      SONG Y P, HE L, ZHANG S, LIU X, CHEN K, JIA Q J, ZHANG Z H, DU M. Food Chem., 2021, 351:129248-129258.

    20. [20]

      LIAQAT M, RIAZ S, NAWAZ M H, BADEA M, HAYAT A, MARTY J L. Electrochim. Acta, 2021, 379:138172-138180.

    21. [21]

      WU G, XIONG Z W, OH S H, REN Y R, WANG Q, YANG L Z. Food Chem., 2021, 356:129663-129669.

    22. [22]

      GUO Z J, TIAN J, CUI C B, WANG Y, YANG H H, YUAN M, YU H S. Food Control, 2021, 123:107741-107747.

    23. [23]

    24. [24]

      MOEZ E, NOEL D, BRICE S, BENJAMIN G, PASCALINE A, DIDIER M. Food Chem., 2020, 310:125851-125856.

    25. [25]

      CHEN Y Q, DING X Y, ZHU D D, LIN X C, XIE Z H. Talanta, 2019, 200:193-202.

    26. [26]

      JORGE A, CRUZ A, GREGORY P. J. Agric. Food Chem., 2008, 56(22):10456-10461.

    27. [27]

      MA G P, WANG Z L, CHEN J, YIN R X, CHEN B L, NIE J. New J. Chem., 2014, 38(3):1211-1217.

    28. [28]

      KWAŚNIEWSKA K, GADZAŁA-KOPCIUCH R, CENDROWSKI K. Crit. Rev. Anal. Chem., 2015, 45(2):119-130.

    29. [29]

      ZHU W Y, REN C, NIE Y, XU Y. Food Control, 2016, 64:37-44.

    30. [30]

      ANDRADE M A, LANCAS F M. J. Chromatogr. A, 2017, 1493:41-48.

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    3. [3]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    4. [4]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    7. [7]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    8. [8]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    9. [9]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    10. [10]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    11. [11]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    12. [12]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    13. [13]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    14. [14]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    15. [15]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    16. [16]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    17. [17]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(8)
  • Abstract views(931)
  • HTML views(191)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return