Citation: WANG Chao,  JIA Xiao-Dan,  JIANG Xiu-E. Application of Nanomaterials in Bioimaging Guided Photodynamic Therapy[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1142-1153. doi: 10.19756/j.issn.0253-3820.201702 shu

Application of Nanomaterials in Bioimaging Guided Photodynamic Therapy

  • Corresponding author: JIANG Xiu-E, jiangxiue@ciac.ac.cn
  • Received Date: 24 November 2020
    Revised Date: 17 March 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22025406, 21874125, 21877107).

  • With the development of nanotechnology, developing novel nanoplatforms simultaneously integrating bioimaging and treatment for precise cancer theranostics has become a research hotspot. As one of the emerging therapies, photodynamic therapy (PDT) has many advantages such as high specificity, controllability and low side effects, which has attracted extensive research attention. Recently, PDT based on nanomaterials has overcome the limitations of traditional PDT such as low stability, low tumor-targeting ability and phototoxicity, and has shown great application potential. Furthermore, the technologies of bioimaging and PDT can be integrated into a single nanoplatform to realize cancer theranostics. So far, a variety of imaging modes have been applied to the research of PDT based on nanomaterials, such as fluorescence imaging, magnetic resonance imaging (MRI), computer tomography (CT) imaging, ultrasound (US) imaging, photoacoustic (PA) imaging, positron emission tomography (PET) imaging, and single-photon emission computed tomography (SPECT) imaging. This article summarizes the use of multifunctional nanomaterials for bioimaging-guided PDT. Finally, the current challenges and prospects for future development are discussed.
  • 加载中
    1. [1]

      RYVOLOVA M, CHOMOUCKA J, DRBOHLAVOVA J, KOPEL P, BABULA P, HYNEK D, ADAM V, ECKSCHLAGER T, HUBALEK J, STIBOROVA M, KAISER J, KIZEK R. Sensors, 2012, 12(11): 14792-14820.

    2. [2]

      CHRONOS N A, GOODALL A H, WILSON D J, SIGWART U, BULLER N P. Circulation, 1993, 88(5): 2035-2044.

    3. [3]

      OH I H, MIN H S, LI L, TRAN T H, LEE Y K, KWON I C, CHOI K, KIM K, HUH K M. Biomaterials, 2013, 34(27): 6454-6463.

    4. [4]

      WANG J L, DU X J, YANG J X, SHEN S, LI H J, LUO Y L, IQBAL S, XU C F, YE X D, CAO J, WANG J. Biomaterials, 2018, 182: 104-113.

    5. [5]

      MONTET X, MONTET-ABOU K, REYNOLDS F, WEISSLEDER R, JOSEPHSON L. Neoplasia, 2006, 8(3): 214-222.

    6. [6]

      MONTET X, WEISSLEDER R, JOSEPHSON L. Bioconjugate Chem., 2006, 17(4): 905-911.

    7. [7]

      FAN W P, HUANG P, CHEN X Y. Chem. Soc. Rev., 2016, 45(23): 6488-6519.

    8. [8]

      ALLISON R R, SIBATA C H. Photodiagnosis Photodyn. Ther., 2010, 7(2): 61-75.

    9. [9]

      CHATTERJEE D K, FONG L S, ZHANG Y. Adv. Drug Deliv. Rev., 2008, 60(15): 1627-1637.

    10. [10]

      VOON S H, KIEW L V, LEE H B, LIM S H, NOORDIN M I, KAMKAEW A, BURGESS K, CHUNG L Y. Small, 2014, 10(24): 4993-5013.

    11. [11]

      GUAN Q, LI Y A, LI W Y, DONG Y B. Chem. -Asian J., 2018, 13(21): 3122-3149.

    12. [12]

      ZHAO T T, SHEN X Q, LI L, GUAN Z P, GAO N Y, YUAN P Y, YAO S Q, XU Q H, XU G Q. Nanoscale, 2012, 4(24): 7712-7719.

    13. [13]

      QIAN H S, GUO H C, HO P C, MAHENDRAN R, ZHANG Y. Small, 2009, 5(20): 2285-2290.

    14. [14]

      KOTAGIRI N, SUDLOW G P, AKERS W J, ACHILEFU S. Nat. Nanotechnol., 2015, 10(4): 370-379.

    15. [15]

      DEL ROSAL B, JIA B H, JAQUE D. Adv. Funct. Mater., 2018, 28(44): 1803733.

    16. [16]

      JAQUE D, RICHARD C, VIANA B, SOGA K, LIU X, GARCÍA SOLÉ J. Adv. Opt. Photon., 2016, 8(1): 1-103.

    17. [17]

      CHEN X Q, LEE D, YU S, KIM G, LEE S, CHO Y, JEONG H, NAM K T, YOON J. Biomaterials, 2017, 122: 130-140.

    18. [18]

      ZUO J, TU L P, LI Q Q, FENG Y S, Que I, ZHANG Y, LIU X M, XUE B, Cruz L J, CHANG Y L, ZHANG H, KONG X G. ACS Nano, 2018, 12(4): 3217-3225.

    19. [19]

      DEGEN C L, POGGIO M, MAMIN H J, RETTNER C T, RUGAR D. Proc. Natl. Acad. Sci. U. S. A., 2009, 106(5): 1313-1317.

    20. [20]

      WEISSLEDER R, NAHRENDORF M, PITTET M J. Nat. Mater., 2014, 13: 125-138.

    21. [21]

      THOMSEN H S, MORCOS S K, DAWSON P. Clin. Radiol., 2006, 61: 905-906.

    22. [22]

      LI Y, DU Y, LIANG X L, SUN T, XUE H D, TIAN J, JIN Z Y. Nanoscale, 2018, 10(35): 16738-16749.

    23. [23]

      BAI J, JIA X D, ZHEN W Y, CHENG W L, JIANG X E. J. Am. Chem. Soc., 2018, 140(1): 106-109.

    24. [24]

      MA Z F, JIA X D, BAI J, RUAN Y D, WANG C, LI J M ZHANG M C, JIANG X E. Adv. Funct. Mater., 2017, 27(4): 1604258.

    25. [25]

      ANTON N, VANDAMME T F. Pharm. Res., 2014, 31(1): 20-34.

    26. [26]

      LI X, ANTON N, ZUBER G, VANDAMME T. Adv. Drug Deliv. Rev., 2014, 76: 116-133.

    27. [27]

      ZHEN W Y, LIU Y, JIA X D, WU L, WANG C, JIANG X E. Nanoscale Horiz., 2019, 4(3), 720-726.

    28. [28]

      ZHANG L, WANG D, YANG K, SHENG D L, TAN B, WANG Z G, RAN H T, YI H J, ZHONG Y X, LIN H, CHEN Yu. Adv. Sci., 2018, 5(8): 1800049.

    29. [29]

      ZHOU J, WANG Q L, GENG S Z, LOU R, YIN Q W, YE W R. Mater. Sci. Eng. C, 2019, 102: 541-551.

    30. [30]

      PAEFGEN V, DOLESCHEL D, KIESSLING F. Front. Pharmacol., 2015, 6: 197.

    31. [31]

      CLAUDON M, DIETRICH C F, CHOI B I, COSGROVE D O, KUDO M, NOLSØE C P, PISCAGLIA F, WILSON S R, BARR R G, CHAMMAS M C, CHAUBAL N G, CHEN M-H, CLEVERT D A, CORREAS J M, DING H, FORSBERG F, FOWLKES J B, GIBSON R N, GOLDBERG B B, LASSAU N, LEEN E L S, MATTREY R F, MORIYASU F, SOLBIATI L, WESKOTT H P, XU H X. Ultrasound Med. Biol., 2013, 39(2): 187-210.

    32. [32]

      MULLIN L B, PHILLIPS L C, DAYTON P A. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2013, 60(1): 65-77.

    33. [33]

      CASCIARO S, SOLOPERTO G, GRECO A, CASCIARO E, FRANCHINI R, CONVERSANO F. IEEE Sens. J., 2013, 13(6): 2305-2312.

    34. [34]

      SUN S J, XU Y X, FU P, CHEN M, SUN S H, ZHAO R R, WANG J R, LIANG X L, WANG S M. Nanoscale, 2018, 10(42): 19945-19956.

    35. [35]

      HU D H, CHEN Z W, SHENG Z H, GAO D Y, YAN F, MA T, ZHENG H R, HONG M. Nanoscale, 2018, 10(36): 17283-17292.

    36. [36]

      ZHANG H F, MASLOV K, STOICA G, WANG L V. Nat. Biotechnol., 2006, 24(7): 848-851.

    37. [37]

      WILSON K, HOMAN K, EMELIANOV S. Nat. Commun., 2012, 3(1): 618.

    38. [38]

      WEBER J, BEARD P C, BOHNDIEK S E. Nat. Methods, 2016, 13(8): 639-650.

    39. [39]

      CHEN Z J, YANG S H, XING D. Opt. Lett., 2012, 37(16): 3414-3416.

    40. [40]

      GALANZHA E I, SHASHKOV E V, SPRING P M, SUEN J Y, ZHAROV V P. Cancer Res., 2009, 69(20): 7926.

    41. [41]

      WEISSLEDER R. Nat. Biotechnol., 2001, 19(4): 316-317.

    42. [42]

      HOU Z Y, DENG K R, WANG M F, LIU Y H, CHANG M Y, HUANG S S, LI C X, WEI Y, CHEN Z Y, HAN G, Al KHERAIF A A, LIN J. Chem. Mater., 2019, 31(3): 774-784.

    43. [43]

      WANG Y J, GONG N G, LI Y J, LU Q C, WANG X, LI J H. J. Am. Chem. Soc., 2020, 142: 1735-1739.

    44. [44]

      ZHEN W Y, LIU Y, LIN L, BAI J, JIA Xi D, TIAN H Y, JIANG X E. Angew. Chem., Int. Ed., 2018, 57(32): 10309-10313.

    45. [45]

      GOTTHARDT M, BLEEKER-ROVERS C P, BOERMAN O C, OYEN W J G. J. Nucl. Med. Technol, 2013, 41(3): 157-169.

    46. [46]

      YU B, GOEL S, NI D L, ELLISON P A, SIAMOF C M, JIANG D W, CHENG L, KANG L, YU F Q, LIU Z, BARNHART T E, HE Q J, ZHANG H, CAI W B. Adv. Mater., 2018, 30(13): 1704934.

    47. [47]

      ZHU W J, YANG Y, JIN Q T, CHAO Yu, TIAN L L, LIU J J, DONG Z L, LIU Z. Nano Res., 2019, 12(6): 1307-1312.

  • 加载中
    1. [1]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    2. [2]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    3. [3]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    4. [4]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    5. [5]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    6. [6]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    7. [7]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    8. [8]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    9. [9]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    10. [10]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    11. [11]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    12. [12]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    13. [13]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    14. [14]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    17. [17]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    18. [18]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    19. [19]

      Jianfu Zhang Wei Bai Juan Hou Chenyang Zou . Reform and Practice of “Project-Patent- Scholarly Paper” Integrated Teaching Mode: Taking “Polymer Processing” Course as an Example. University Chemistry, 2025, 40(4): 138-146. doi: 10.12461/PKU.DXHX202408138

    20. [20]

      Zhixin Zhou Ran Chen Yuanjian Zhang Songqin Liu Yanfei Shen . 分析化学课程本硕一体化的全英文教学改革. University Chemistry, 2025, 40(6): 64-70. doi: 10.12461/PKU.DXHX202407093

Metrics
  • PDF Downloads(0)
  • Abstract views(936)
  • HTML views(129)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return