Citation: FAN Zi-Yan,  LIU Zheng-Jie,  ZHANG Rui-Long,  HAN Guang-Mei,  ZHANG Zhong-Ping. Preparation of Lysosome-targeting Carbon Dots and Its Application in Cell Imaging[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1208-1217. doi: 10.19756/j.issn.0253-3820.201701 shu

Preparation of Lysosome-targeting Carbon Dots and Its Application in Cell Imaging

  • Corresponding author: HAN Guang-Mei, gmhan@ahu.edu.cn
  • Received Date: 24 November 2020
    Revised Date: 26 April 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22074001, 21874137, 21974001, 21775001) and the Science and Technology Service Network Initiative of Chinese Academy of Sciences (No. KFJ-STS-ZDTP-080).

  • The lysosome-targeting carbon dots with excellent water solubility and strong blue emission were synthesized through a one-step functional modification for long-term lysosome imaging in living cells. Based on the carboxyl rich carbon dots synthesized by oxidizing carbon black in refluxing HNO3, N,N-dimethylethylenediamine (DMEDA) was chemically linked onto the carboxyl rich carbon dots through acylation reaction to obtain DMEDA modified carbon dots (M-CDs). The infrared spectrum of M-CDs showed the characteristic peak of acylamide (O=C-NH-) at 1658 cm–1, indicating the successful modification of DMEDA. The quantum yield of M-CDs was 15.6%, which was about 27 times higher than the original carboxyl rich carbon dots, meeting the requirement of cell imaging. The probe entered cells through temperature-dependent endocytosis way and the co-localization experiment with commercial dye Lyso-Tracker red showed that the probe localized in lysosomes and could be used as a universal lysosome tracker in different cell lines. Moreover, compared to commercially available Lyso-Tracker blue, M-CDs were more photostable under UV light. The fluorescence of M-CDs was still brightness after time-lapsed imaging by confocal microscopy for 120 min with an interval of 5 min in living cells, implying that the M-CDs could be used for long-term imaging of lysosomes.
  • 加载中
    1. [1]

      ZHANG X, WANG J, LI X G, WANG D H. Cancer Lett., 2018, 439: 39-46.

    2. [2]

      CARMONA-GUTIERREZ D, HUGHES A L, MADEO F, RUCKENSTUHL C. Ageing Res. Rev., 2016, 32: 2-12.

    3. [3]

      DAVIDSON S M, VANDER HEIDEN M G. Annu. Rev. Pharmacol., 2017, 57(1): 481-507.

    4. [4]

    5. [5]

      KOCH M, SYMVOULIDIS P, NTZIACHRISTOS V. Nat. Photonics, 2018, 12(9): 505-515.

    6. [6]

    7. [7]

      BONAM S R, WANG F, MULLER S. Nat. Rev. Drug Discovery, 2019, 18(12): 923-948.

    8. [8]

    9. [9]

      LI Z H, YUAN H, YUAN W, SU Q Q, LI F Y. Coord. Chem. Rev., 2018, 354: 155-168.

    10. [10]

      LI M Y, ZHAO J, CHU H Q, MI Y S, ZHOU Z H, DI Z H, ZHAO M P, LI L L. Adv. Mater., 2019, 31(45): 1804745.

    11. [11]

      LECUYER T, TESTON E, RAMIREZ-GARCIA G, MALDINEY T, VIANA B, SEGUIN J, MIGNET N, SCHERMAN D, RICHARD C. Theranostics, 2016, 6(13): 2488-2524.

    12. [12]

      ZHAO T, HUANG G, LI Y, YANG S C, RAMEZANI S, LIN Z Q, WANG Y G, MA X P, ZENG Z Q, LUO M, DE BOER E, XIE X J, THIBODEAUX J, BREKKEN R A, SUN X K, SUMER B D, GAO J M. Nat. Biomed. Eng., 2016, 1(1): 0006.

    13. [13]

      YANG J, WANG T, ZHAO L N, RAJASEKHAR V K, JOSHI S, ANDREOU C, PAL S, HSU H, Zhang H W, COHEN I J, HUANG R M, HENDRICKSON R C, MIELE M M, Pei W B, BRENDEL M B, HEALEY J H, CHIOSIS G, KIRCHER M F. Nat. Biomed. Eng., 2020, 4(7): 686-703.

    14. [14]

      WANG C S, ZHAO T, LI Y, HUANG G, WHITE M A, GAO J M. Adv. Drug Delivery Rev., 2017, 113: 87-96.

    15. [15]

      ZHANG R, LIANG L E, MENG Q T, ZHAO J B, TA H T, LI L, ZHANG Z Q, SULTANBAWA Y, XU Z P. Small, 2019, 15(2):1803712.

    16. [16]

    17. [17]

    18. [18]

      XIA C L, ZHU S J, FENG T L, YANG M X, YANG B. Adv. Sci., 2019, 6(23): 1901316.

    19. [19]

      BHATTACHARYA S, PHATAKE R S, NABHA BARNEA S, ZERBY N, ZHU J J, SHIKLER R, LEMCOFF N G, JELINEK R. ACS Nano, 2019, 13(2): 1433-1442.

    20. [20]

      GENG X, SUN Y Q, LI Z H, YANG R, ZHAO Y M, GUO Y F, XU J J, LI F T, WANG Y, LU S Y, QU L B. Small, 2019, 15(48): 1970259.

    21. [21]

      LI D, JING P T, SUN L H, AN Y, SHAN X Y, LU X H, ZHOU D, HAN D, SHEN D Z, ZHAI Y C, QU S N, ZBORIL R, ROGACH A L. Adv. Mater., 2018, 30(13): 1870092.

    22. [22]

      ALI H, GHOSH S, JANA N R. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2020, 12(4): e1617.

    23. [23]

      WU L L, LI X L, LING Y F, HUANG C S, JIA N Q. ACS Appl. Mater. Interfaces, 2017, 9(34): 28222-28232.

    24. [24]

      HAN G M, ZHAO J, ZHANG R L, TIAN X H, LIU Z J, WANG A D, LIU R Y, LIU B H, HAN M Y, GAO X H, ZHANG Z P. Angew. Chem., Int. Ed., 2019, 58(21): 7087-7091.

    25. [25]

      DONG Y Q, CHEN C Q, ZHENG X T, GAO L L, CUI Z M, YANG H B, GUO C X, CHI Y W, LI C M. J. Mater. Chem., 2012, 22(18): 8764-8766.

    26. [26]

      LAKOWICZ J R. Principles of Fluorescence Spectroscopy, Second Edition. New York: Kluwer Academic/ Plenum Publishers, 1999: 141-184.

    27. [27]

      YANG S T, CAO L, LUO P G, LU F S, WANG X, WANG H F, MEZIANI M J, LIU Y F, QI G, SUN Y P. J. Am. Chem. Soc., 2009, 131(32): 11308-11309.

    28. [28]

      WANG X J, WANG Y N, HE H, CHEN X, SUN X, SUN Y W, ZHOU G J, XU H, HUANG F. J. Mater. Chem. B, 2016, 4(4): 779-784.

  • 加载中
    1. [1]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    2. [2]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    3. [3]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    4. [4]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    5. [5]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    6. [6]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    7. [7]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    8. [8]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    9. [9]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    10. [10]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    11. [11]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    14. [14]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    15. [15]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    16. [16]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    17. [17]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    18. [18]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    19. [19]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    20. [20]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

Metrics
  • PDF Downloads(0)
  • Abstract views(968)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return