Citation: WANG Hong,  SU Xing-Song,  ZHOU Fei,  DUAN Guo-Tao. Preparation of Zinc Oxide Monolayer Porous Hollow Sphere Array and Its Ultra-Fast Response to NO2 at Room Temperature under Ultraviolet Irradiation[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1112-1121. doi: 10.19756/j.issn.0253-3820.201607 shu

Preparation of Zinc Oxide Monolayer Porous Hollow Sphere Array and Its Ultra-Fast Response to NO2 at Room Temperature under Ultraviolet Irradiation

  • Corresponding author: DUAN Guo-Tao, duangt@hust.edu.cn
  • Received Date: 16 October 2020
    Revised Date: 25 January 2021

    Fund Project: Supported by the National Key R&D Program of China (No.2020YFB2008701) and the National Natural Science Foundation of China (No.11674320).

  • By using monolayer polystyrene colloidal spheres as the template, ZnO array-film was in-situ synthesized on the plate electrodes for gas sensors by template-assisted hydrothermal method. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) characterization results showed that the film was composed of ordered monolayer porous hollow spheres with pore size of about 4 nm. The gas-sensing performances of the prepared thin-film gas sensor were investigated. Under UV irradiation with a low optical radiation power (1.7 mW/cm2), the thin-film gas sensor based on ZnO monolayer hollow sphere array showed excellent NO2-sensing performances with a detection limit of 0.098 mg/m3, and the sensing response toward 2.45 mg/m3 NO2 gas could reach 5.7 with an ultra-fast response/recovery speed (3 s/5 s). With the finite difference time domain method, the local field intensity of the monolayer hollow sphere array-film was investigated, and it was found that the second-level response/recovery mechanism might be due to the relatively uniform local field intensity distribution of the monolayer hollow sphere array film.
  • 加载中
    1. [1]

      EBRAHIM A M, BANDOSZ T J. ACS Appl. Mater. Interfaces, 2013, 5(21):10565-10573.

    2. [2]

      WANG J, SHEN Y Q, LI X, XIA Y, YANG C. Sens. Actuators, B, 2019, 298:126858.

    3. [3]

      TAN J J, HU J Y, REN J X, PENG J F, LIU C, SONG Y Q, ZHANG Y. Chin. Chem. Lett., 2020, 31(8):2103-2108.

    4. [4]

      YU X, WANG D, WANG Y Q, YAN J, WANG X Y. Chin. Chem. Lett., 2020, 31(8):2099-2102.

    5. [5]

      YANG Y, QI J L, RUAN Z L, YIN P, ZHANG S Y, LIU J M, LIU Y N, LI R, WANG L J, LIN H L. The Innovation, 2020, 1(3):100064.

    6. [6]

      ZENG W W, LIU Y Z, MEI J, TANG C Y, LUO K, LI S M, ZHAN H R, HE Z K. Sens. Actuators, B, 2019, 301:127010.

    7. [7]

      LI J W, LIU X, CUI J S, SUN J B. ACS Appl. Mater. Interfaces, 2015, 7(19):10108-10114.

    8. [8]

      BARSAN N, KOZIEJ D, WEIMAR U. Sens. Actuators, B, 2007, 121(1):18-35.

    9. [9]

      JAISWAL J, SINGH P, CHANDRA R. Sens. Actuators, B, 2021, 327:128862.

    10. [10]

      LI Z, ZHANG Y, ZHANG H, JIANG Y, YI J X. ACS Appl. Mater. Interfaces, 2020, 12(33):37489-37498.

    11. [11]

      CAMAGNI P, FAGLIA G, GALINETTO P, PEREGO C, SAMOGGIA G, SBERVEGLIERI G. Sens. Actuators, B, 1996, 31(1-2):99-103.

    12. [12]

      COMINI E, FAGLIA G, SBERVEGLIERI G. Sens. Actuators, B, 2001, 78(1):73-77.

    13. [13]

      LI C, ZHANG D H, LIU X L, HAN S N, TANG T, HAN J, ZHOU C W. Appl. Phys. Lett., 2003, 82(10):1613.

    14. [14]

      FAN S W, SRIVASTAVA A, DRAVID V. Appl. Phys. Lett., 2009, 95:142106-142106.

    15. [15]

      MENG L X, XU Q, SUN Z, LI G D, BAI S, WANG Z H, QIN Y. Mater. Lett., 2018, 212:296-298.

    16. [16]

      WANG H T, ZHOU L S, LIU Y Y, LIU F M, LIANG X S, LIU F M, GAO Y, YAN X, LU G Y. Sens. Actuators, B, 2020, 305:127498.

    17. [17]

      KIDA T, FUJIYAMA S, SUEMATSU K, YUASA M, SHIMANOE K. J. Phys. Chem. C, 2013, 117(34):17574-17582.

    18. [18]

      SU X S, GAO L, ZHOU F, DUAN G T. Sens. Actuators, B, 2017, 251:74-85.

    19. [19]

      LI W W, GUO J H, CAI L, QI W Z, SUN Y L, XU J L, SUN M X, ZHU H W, XIANG L, XIE D, REN T L. Sens. Actuators, B, 2019, 290(7):443-452.

    20. [20]

      GENG X, LU P F, ZHANG C, LAHEM D, OLIVIER M G, DEBLIQUY M. Sens. Actuators, B, 2019, 282:690-702.

    21. [21]

      HAN C H, LI X W, LIU Y, LI X H, SHAO C L, RI J S, MA J G, LIU Y C. J. Hazard. Mater., 2021, 403:124093.

    22. [22]

      DAS S, GIRIJA K G, DEBNATH A K, VATSA R K. J. Alloys Compd., 2021, 854(2):157276.

    23. [23]

      ZHONG Y J, LI W W, ZHAO X L, JIANG X, LIN S Y, ZHEN Z, CHEN W D, XIE D, ZHU H W. ACS Appl. Mater. Interfaces, 2019, 11(14):13441-13449.

    24. [24]

      BO Z, WEI X, GUO X Z, YANG H C, MAO S, YAN J H, CEN K F. Chem. Phys. Lett., 2020, 750(7):137485.

    25. [25]

      HOU L, ZHANG C M, MA P, LI L, ZHU K K, KANG X F, CHEN W. Chin. J. Anal. Chem., 2018, 46(7):E1854-E1862.

    26. [26]

      LI X G, LI X X, WANG J, LIN S W. Sens. Actuators, B, 2015, 219:158-163.

    27. [27]

    28. [28]

    29. [29]

      FAN S W, SRIVASTAVA A K, DRAVID V P. Appl. Phys. Lett., 2009, 95(14):142106.

    30. [30]

      MUN Y, PARK S, AN S, LEE C, KIM H W. Ceram. Int., 2013, 39(8):8615-8622.

    31. [31]

      HYODO T, URATA K, KAMADA K, UEDA T, SHIMIZU Y. Sens. Actuators, B, 2017, 253:630-640.

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    3. [3]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    4. [4]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    8. [8]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    9. [9]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    10. [10]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    11. [11]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    12. [12]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    14. [14]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Kun JIANGYutong XUEKelin LIUMiao WANGTongming SUNYanfeng TANG . CeVO4 hollow microspheres: Fabrication and adsorption performance for dyes. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2229-2236. doi: 10.11862/CJIC.20250223

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    20. [20]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

Metrics
  • PDF Downloads(5)
  • Abstract views(903)
  • HTML views(170)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return