Citation:
LIU Tian-Xin, JIANG Lang, YANG Hong, CAO Ke-Qi, XU Ling, HUANG Yi, AN Rong, ZHANG Xiao-Hua, QING Xiang-Dong, ZHOU Xiao-Hong. A Novel Chemometrics Coupling Technique for Source Apportionment of 11 Kinds of Polycyclic Aromatic Hydrocarbons in Steel-industrial Soil[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(5): 791-800.
doi:
10.19756/j.issn.0253-3820.201524
-
A novel chemometrics coupling technique was proposed for the source apportionment of 11 kinds of polycyclic aromatic hydrocarbons (PAHs) in six topsoils around the steel-industrial region and five nonindustrial topsoils. First, the second-order calibration method based on alternating trilinear decomposition was used to decompose the gas chromatography-mass spectrum-soil sample three-way data array, then component analysis and multiple diagnostic ratios were applied to the source apportionment of 11 kinds of PAHs in the steel-industrial topsoils according to the composition and content of PAHs. The research finding showed that the resolved chromatographic and mass spectral profiles of 11 kinds of PAHs were similar to their actual ones. The found PAHs were less than two kinds, and their total concentrations were less than 25.9 μg/kg in nonindustrial topsoil samples, but the found PAHs were in the range of seven kinds to eleven kinds and total PAHs' concentrations ranged from 249.1 to 2089.1 μg/kg in industrial topsoil samples, and the highest concentration of individual PAH in industrial topsoil samples was 600.4 μg/kg for acenaphthylene. The source of PAHs in these samples mainly came from high temperature combustion of industrial coal, and the combustion and leakage of oil product made a little contribution to the PAHs' pollution to the industrial topsoil. These results demonstrated that the developed method was a simple, fast, accurate and green analytical strategy for identification, quantification and source apportionment of PAHs in actual soil.
-
-
-
[1]
-
[2]
-
[3]
LIU A, NIAN H, ZHU P F, GUAN Y T. Sci. Total Environ., 2018, 619:938-945.
-
[4]
-
[5]
LUO X, QING X D, MIAO X C, XIANG S, CHEN H J, ZHANG X H, HE M. Int. J. Environ. Anal. Chem., 2021, 101(11):1554-1566.
-
[6]
-
[7]
-
[8]
-
[9]
TRAPIDO M. Environ. Pollut., 1999, 105(1):67-74.
-
[10]
MALISZEWSKA-KORDYBACH B. Appl. Geochem., 1996, 11(1-2):121-127.
-
[11]
OLIVIERI A C, ESCANDAR G M, DE LA PENA A M. TrAC-Trends Anal. Chem., 2011, 30:607-617.
-
[12]
QING X D, LI Y, WEN J, SHEN X D, LI C Y, LIU X L, XIE J. Microchem. J., 2017, 135:114-121.
-
[13]
WU H L, WANG T, YU R Q. TrAC-Trends Anal. Chem., 2020, 130:115954.
-
[14]
ESCANDAR G M, DE LA PENA A M. Microchem. J., 2021, 164:106016.
-
[15]
ESCANDAR G M, OLIVIERI A C. J. Chromatogr. A, 2019, 1587:2-13.
-
[16]
ALCARAZ M R, MONAGO-MARANA O, GOICOECHEA H C, DE LA PENA A M. Anal. Chim. Acta, 2019, 1083:41-57.
-
[17]
WU H L, LI Y, YU R Q. J. Chemom., 2014, 28:476-489.
-
[18]
WU H L, SHIBUKAWA M, OGUMA K. J. Chemom., 1998, 12:1-26.
-
[19]
-
[20]
-
[21]
LI X G, LV X L, ZHANG Y. Adv. Mater. Res., 2013, 753-755:2269-2272.
-
[22]
AIRADO-RODIRGUEZ D, DURAN-MERASI I, GALEANO-DIAZ T, WOLD J P. J. Food Compos. Anal., 2011, 24(2):257-264.
-
[23]
ZHANG X H, WU H L, WANG J Y, TU D Z, KANG C, ZHAO J, CHEN Y, MIU X X, YU R Q. Food Chem., 2013, 138(1):62-69.
-
[24]
MOSTERT M M R, AYOKO G A, KOKOT S. TrAC-Trends Anal. Chem., 2010, 29(5):430-445.
-
[25]
WANG C H, WU S H, ZHOU S L, SHI Y X, SONG J. Pedosphere, 2017, 27(1):17-26.
-
[26]
-
[27]
ZHENG L G, OU J P, LIU M, CHEN Y C, TANG Q, HU Y. Ecotoxicol. Environ. Saf., 2019, 169:470-478.
-
[28]
-
[29]
-
[30]
RAVINDRA K, DIRTU A C, MOR S, WAUTERS E, GRIEKEN R V. Environ. Sci. Pollut. Res., 2020, 27:14933-14943.
-
[1]
-
-
-
[1]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[2]
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
-
[3]
Xingyuan Lu , Yutao Yao , Junjing Gu , Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074
-
[4]
Fanpeng Shang , Jiantuo Chen . 多视角分析DMPE盘状双层胶束——第38届中国化学奥林匹克(初赛)第4题解析. University Chemistry, 2025, 40(8): 388-393. doi: 10.12461/PKU.DXHX202410034
-
[5]
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
-
[6]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[7]
Yujie WANG , Laobang WANG , Zheng ZHANG , Qi LIU , Jianping LANG . Construction of W/Cu/S cluster-based supramolecular compounds via alkynyl/sulfur cycloaddition and their third-order nonlinear optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2069-2077. doi: 10.11862/CJIC.20250129
-
[8]
Ruilan Fan , Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025
-
[9]
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
-
[10]
Shunü Peng , Huamin Li , Zhaobin Chen , Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043
-
[11]
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035
-
[12]
Xiyuan Su , Zhenlin Hu , Ye Fan , Xianyuan Liu , Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059
-
[13]
Zongpei Zhang , Yanyang Li , Yanan Si , Kai Li , Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041
-
[14]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[15]
Weijie Yang , Mansheng Chen , Chen Xu , Fujian Xu . Hydroxyl-Rich Polycations: Innovative Materials Empowering Life and Health. University Chemistry, 2025, 40(9): 332-343. doi: 10.12461/PKU.DXHX202410072
-
[16]
Changsheng An , Tao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101
-
[17]
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
-
[18]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[19]
Mengyang LI , Hao XU , Zhonghao NIU , Chunhua GONG , Weihui ZHONG , Jingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080
-
[20]
Siwen Yuan , Qilin Wu , TianpengYin . NMR Spectroscopy Teaching Design Using the Mosher Method for Stereochemistry of Organic Compounds Based on BOPPPS Teaching Model. University Chemistry, 2025, 40(7): 161-168. doi: 10.12461/PKU.DXHX202502073
-
[1]
Metrics
- PDF Downloads(3)
- Abstract views(793)
- HTML views(99)
Login In
DownLoad: