Citation: LIU Tian-Xin,  JIANG Lang,  YANG Hong,  CAO Ke-Qi,  XU Ling,  HUANG Yi,  AN Rong,  ZHANG Xiao-Hua,  QING Xiang-Dong,  ZHOU Xiao-Hong. A Novel Chemometrics Coupling Technique for Source Apportionment of 11 Kinds of Polycyclic Aromatic Hydrocarbons in Steel-industrial Soil[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 791-800. doi: 10.19756/j.issn.0253-3820.201524 shu

A Novel Chemometrics Coupling Technique for Source Apportionment of 11 Kinds of Polycyclic Aromatic Hydrocarbons in Steel-industrial Soil

  • Corresponding author: QING Xiang-Dong,  ZHOU Xiao-Hong, 
  • Received Date: 30 August 2020
    Revised Date: 10 January 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.32172300), the Research Foundation of Education Bureau of Hunan Province, China (Nos.21B0720, 19C0345) and the Hunan Provincial Natural Science Foundation, China (No.2021JJ50151).

  • A novel chemometrics coupling technique was proposed for the source apportionment of 11 kinds of polycyclic aromatic hydrocarbons (PAHs) in six topsoils around the steel-industrial region and five nonindustrial topsoils. First, the second-order calibration method based on alternating trilinear decomposition was used to decompose the gas chromatography-mass spectrum-soil sample three-way data array, then component analysis and multiple diagnostic ratios were applied to the source apportionment of 11 kinds of PAHs in the steel-industrial topsoils according to the composition and content of PAHs. The research finding showed that the resolved chromatographic and mass spectral profiles of 11 kinds of PAHs were similar to their actual ones. The found PAHs were less than two kinds, and their total concentrations were less than 25.9 μg/kg in nonindustrial topsoil samples, but the found PAHs were in the range of seven kinds to eleven kinds and total PAHs' concentrations ranged from 249.1 to 2089.1 μg/kg in industrial topsoil samples, and the highest concentration of individual PAH in industrial topsoil samples was 600.4 μg/kg for acenaphthylene. The source of PAHs in these samples mainly came from high temperature combustion of industrial coal, and the combustion and leakage of oil product made a little contribution to the PAHs' pollution to the industrial topsoil. These results demonstrated that the developed method was a simple, fast, accurate and green analytical strategy for identification, quantification and source apportionment of PAHs in actual soil.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      LIU A, NIAN H, ZHU P F, GUAN Y T. Sci. Total Environ., 2018, 619:938-945.

    4. [4]

    5. [5]

      LUO X, QING X D, MIAO X C, XIANG S, CHEN H J, ZHANG X H, HE M. Int. J. Environ. Anal. Chem., 2021, 101(11):1554-1566.

    6. [6]

    7. [7]

    8. [8]

    9. [9]

      TRAPIDO M. Environ. Pollut., 1999, 105(1):67-74.

    10. [10]

      MALISZEWSKA-KORDYBACH B. Appl. Geochem., 1996, 11(1-2):121-127.

    11. [11]

      OLIVIERI A C, ESCANDAR G M, DE LA PENA A M. TrAC-Trends Anal. Chem., 2011, 30:607-617.

    12. [12]

      QING X D, LI Y, WEN J, SHEN X D, LI C Y, LIU X L, XIE J. Microchem. J., 2017, 135:114-121.

    13. [13]

      WU H L, WANG T, YU R Q. TrAC-Trends Anal. Chem., 2020, 130:115954.

    14. [14]

      ESCANDAR G M, DE LA PENA A M. Microchem. J., 2021, 164:106016.

    15. [15]

      ESCANDAR G M, OLIVIERI A C. J. Chromatogr. A, 2019, 1587:2-13.

    16. [16]

      ALCARAZ M R, MONAGO-MARANA O, GOICOECHEA H C, DE LA PENA A M. Anal. Chim. Acta, 2019, 1083:41-57.

    17. [17]

      WU H L, LI Y, YU R Q. J. Chemom., 2014, 28:476-489.

    18. [18]

      WU H L, SHIBUKAWA M, OGUMA K. J. Chemom., 1998, 12:1-26.

    19. [19]

    20. [20]

    21. [21]

      LI X G, LV X L, ZHANG Y. Adv. Mater. Res., 2013, 753-755:2269-2272.

    22. [22]

      AIRADO-RODIRGUEZ D, DURAN-MERASI I, GALEANO-DIAZ T, WOLD J P. J. Food Compos. Anal., 2011, 24(2):257-264.

    23. [23]

      ZHANG X H, WU H L, WANG J Y, TU D Z, KANG C, ZHAO J, CHEN Y, MIU X X, YU R Q. Food Chem., 2013, 138(1):62-69.

    24. [24]

      MOSTERT M M R, AYOKO G A, KOKOT S. TrAC-Trends Anal. Chem., 2010, 29(5):430-445.

    25. [25]

      WANG C H, WU S H, ZHOU S L, SHI Y X, SONG J. Pedosphere, 2017, 27(1):17-26.

    26. [26]

    27. [27]

      ZHENG L G, OU J P, LIU M, CHEN Y C, TANG Q, HU Y. Ecotoxicol. Environ. Saf., 2019, 169:470-478.

    28. [28]

    29. [29]

    30. [30]

      RAVINDRA K, DIRTU A C, MOR S, WAUTERS E, GRIEKEN R V. Environ. Sci. Pollut. Res., 2020, 27:14933-14943.

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    3. [3]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    4. [4]

      Fanpeng Shang Jiantuo Chen . 多视角分析DMPE盘状双层胶束——第38届中国化学奥林匹克(初赛)第4题解析. University Chemistry, 2025, 40(8): 388-393. doi: 10.12461/PKU.DXHX202410034

    5. [5]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Yujie WANGLaobang WANGZheng ZHANGQi LIUJianping LANG . Construction of W/Cu/S cluster-based supramolecular compounds via alkynyl/sulfur cycloaddition and their third-order nonlinear optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2069-2077. doi: 10.11862/CJIC.20250129

    8. [8]

      Ruilan Fan Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025

    9. [9]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    10. [10]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    11. [11]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    12. [12]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    13. [13]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    14. [14]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    15. [15]

      Weijie Yang Mansheng Chen Chen Xu Fujian Xu . Hydroxyl-Rich Polycations: Innovative Materials Empowering Life and Health. University Chemistry, 2025, 40(9): 332-343. doi: 10.12461/PKU.DXHX202410072

    16. [16]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    17. [17]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    18. [18]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    19. [19]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    20. [20]

      Siwen Yuan Qilin Wu TianpengYin . NMR Spectroscopy Teaching Design Using the Mosher Method for Stereochemistry of Organic Compounds Based on BOPPPS Teaching Model. University Chemistry, 2025, 40(7): 161-168. doi: 10.12461/PKU.DXHX202502073

Metrics
  • PDF Downloads(3)
  • Abstract views(794)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return