Citation: LIU Fu-Xin,  DU Shi-Long,  LI Lin,  LIU Qian,  DING Lan,  LIU Xiu-Hui. A Novel Electrochemical Sensor Based on Pt Nanoparticles/Carbon Nanospheres for Direct Detection of Peroxynitrite Anion Released by Living Cells[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2086-2095. doi: 10.19756/j.issn.0253-3820.201398 shu

A Novel Electrochemical Sensor Based on Pt Nanoparticles/Carbon Nanospheres for Direct Detection of Peroxynitrite Anion Released by Living Cells

  • Corresponding author: LIU Xiu-Hui, liuxh@nwnu.edu.cn
  • Received Date: 8 July 2020
    Revised Date: 27 September 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21565021).

  • Peroxynitrite anion (ONOO-) is one of the most important molecules in biological systems and is usually maintained at a very low concentration level under normal physiological condition. However, under oxidative stress, the body will produce high concentration of ONOO- abnormally, which may damage many biomolecules seriously and affect the physiological functions of cells. Therefore, it is very important to construct a sensor that can detect ONOO- released by cells sensitively and rapidly. In this work, a novel ONOO- electrochemical sensor was constructed based on carbon nanospheres (CNS) composite materials modified with platinum nanoparticles (PtNPs). Electron microscopes and electrochemical technology were used for characterization of the prepared CTS/PtNPs/CNS. The sensor showed excellent analytical performance for ONOO- detection, with a wide linear range from 0.615 nmol/L to 0.139 mmol/L, and an extremely low detection limit of 0.205 nmol/L (S/N=3). In addition, it also showed good selectivity, stability and reproducibility, and was applied to detect ONOO- released from living cells. The released ONOO- of cells induced by Cd2+ was investigated, and it was found that more ONOO- released from cells at higher Cd2+ concentration. Finally, the protective effects of the α-lipoic acid (ALA) and glutathione (GSH) on cells were investigated by electrochemical method, and it was found that the antioxidants mixture (ALA+GSH) had better protect cells due to their synergistic effect. The experimental results showed that the developed sensing platform and efficient antioxidation strategy provided the possibility for the future application in the biomedical field and cancer diseases.
  • 加载中
    1. [1]

      PARRI M, CHIARUGI P. Antioxid. Redox Signaling, 2013, 19(15):1828-1845.

    2. [2]

      RODRIGUES P, DE MARCO G, FURRIOL J, MANSEGO M L, PINEDA-ALONSO M, GONZALEZ-NEIRA A, MARTIN-ESCUDERO J C, BENITEZ J, LLUCH A, CHAVES F J, EROLES P. BMC Cancer, 2014, 14(1):861-876.

    3. [3]

      GOLDSTEIN S, LIND J, MERÉNYI G. Chem. Rev., 2005, 105(6):2457-2470.

    4. [4]

      TUPURANI M A, PADALA C, KUMAR R G, PURANAM K, KUMARI S, RANI S H. Int. J. Anal. Bio-Sci., 2013, 1(1):14-20.

    5. [5]

      VALKO M, IZAKOVIC M, MAZUR M, RHODES C J, TELSER J. Mol. Cell. Biochem., 2004, 266(1):37-56.

    6. [6]

      BOHLE D S, HANSERT B, PAULSON S C, SMITH B D. J. Am. Chem. Soc., 1994, 116(16):7423-7424.

    7. [7]

      RADI R, PELUFFO G, ALVAREZ M A N, NAVILIAT M, CAYOTA A. Free Radical Biol. Med., 2001, 30(5):463-488.

    8. [8]

      HUANG J C, LI D J, DIAO J C, HOU J, YUAN J L, ZOU G L. Talanta, 2007, 72(4):1283-1287.

    9. [9]

      SODUM R S, AKERKAR S A, FIALA E S. Anal. Biochem., 2000, 280(2):278-285.

    10. [10]

      DIKALOV S, SKATCHKOV M, BASSENGE E. Biochem. Biophys. Res. Commun., 1997, 230(1):54-57.

    11. [11]

      LI Y, HU K K, YU Y, ROTENBERG S A, AMATORE C, MIRKIN M V. J. Am. Chem. Soc., 2017, 139(37):13055-13062.

    12. [12]

      KOH W C A, SON J I, CHOE E S, SHIM Y B. Anal. Chem., 2010, 82(24):10075-10082.

    13. [13]

      PETEU S F, WHITMAN B W, GALLIGAN J J, SWAIN G M. Analyst, 2016, 141(5):1796-1806.

    14. [14]

      PETEU S F, BOSE T, BAYACHOU M. Anal. Chim. Acta, 2013, 780:81-88.

    15. [15]

      AMATORE C, ARBAULT S, BRUCE D, DE OLIVEIRA P, ERARD M, VUILLAUME M. Chem.-Eur. J., 2001, 7(19):4171-4179.

    16. [16]

      WANG Y, CHEN Z Z. Talanta, 2010, 82(2):534-539.

    17. [17]

      XIE F, ZHANG L, SU D, JARONIEC M, QIAO S Z. Adv. Mater., 2017, 29(24):1700989.

    18. [18]

      ZHAO M, CUI X, XU Y, CHEN L, HE Z, YANG S, WANG Y. Nanoscale, 2018, 10(32):15379-15386.

    19. [19]

      GANESHKUMAR M, PONRASU T, SATHISHKUMAR M, SUGUNA L. Colloids Surf., B, 2013, 103:238-243.

    20. [20]

      CUI R, LIU C, SHEN J, GAO D, ZHU J J, CHEN H Y. Adv. Funct. Mater., 2008, 18(15):2197-2204.

    21. [21]

      LEE M H, WANG S Y, CHIANG W H, FENG H, HUANG T Y, YEH M H, WU K C W, HO K C. J. Taiwan Inst. Chem. Eng., 2019, 96:566-574.

    22. [22]

      LI P, ZHANG M, LIU X, SU Z, WEI G. Nanomaterials, 2017, 7(9):236-247.

    23. [23]

      LIU Y, SHANG T, LIU Y, LIU X, XUE Z, LIU X. Sens. Actuators, B, 2018, 263:543-549.

    24. [24]

      KANG X, WANG J, WU H, AKSAY I A, LIU J, LIN Y. Biosens. Bioelectron., 2009, 25(4):901-905.

    25. [25]

      ALI A, AHMED S. Int. J. Biol. Macromol., 2018, 109:273-286.

    26. [26]

      BIN D S, CHI Z X, LI Y, ZHANG K, YANG X, SUN Y G, PIAO J Y, CAO A M, WAN L J. J. Am. Chem. Soc., 2017, 139(38):13492-13498.

    27. [27]

      ZHOU L N, ZHANG X T, SHEN W J, SUN S G, LI Y J. RSC Adv., 2015, 5(57):46017-46025.

    28. [28]

      ROBINSON K M, BECKMAN J S. Methods Enzymol., 2005, 396:207-214.

    29. [29]

      LIU Z, GAN L, HONG L, CHEN W, LEE J Y. J. Power Sources, 2005, 139(1):73-78.

    30. [30]

      XIE B, ZHANG Y, DU N, LI H, HOU W, ZHANG R. Chem. Commun., 2016, 52(95):13815-13818.

    31. [31]

      MACLEOD A J. Appl. Math. Comput., 1993, 57(2-3):305-310.

    32. [32]

    33. [33]

      VELASCO J G. Electroanalysis, 1997, 9(11):880-882.

    34. [34]

      IWUNZE M O. Cell. Mol. Biol. (Noisy-le-grand), 2004, 50(6):759-765.

    35. [35]

      CORTẼS J S, GRANADOS S G, ORDAZ A A, JIMÉNEZ J A L, GRIVEAU S, BEDIOUI F. Electroanalysis, 2007, 19(1):61-64.

    36. [36]

      LI L, ZHANG B, LIU F, XUE Z, LU X, LIU X. Sens. Actuators, B, 2020, 306:127560.

    37. [37]

      HOSU I S, WANG Q, VASILESCU A, PETEU S F, RADITOIU V, RAILIAN S, ZAITSEV V, TURCHENIUK K, WANG Q, LI M. RSC Adv., 2015, 5(2):1474-1484.

    38. [38]

      OPREA R, PETEU S F, SUBRAMANIAN P, QI W, PICHONAT E, HAPPY H, BAYACHOU M, BOUKHERROUB R, SZUNERITS S. Analyst, 2013, 138(15):4345-4352.

    39. [39]

      LIU F, LI L, ZHANG B, FAN W, ZHANG R, LIU G, LIU X. Analyst, 2019, 144(23):6905-6913.

    40. [40]

      GENNARI A, CORTESE E, BOVERI M, CASADO J, PRIETO P. Toxicology, 2003, 183(1):211-220.

    41. [41]

      WANG Y, WU Y, LUO K, LIU Y, ZHOU M, YAN S, SHI H, CAI Y. Food Chem. Toxicol., 2013, 58:61-67.

    42. [42]

      FANG X, HUANG T, ZHU Y, YAN Q, CHI Y, JIANG J X, WANG P, MATSUE H, KITAMURA M, YAO J. Antioxid. Redox Signaling, 2011, 14(12):2427-2439.

  • 加载中
    1. [1]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    6. [6]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    9. [9]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    11. [11]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    12. [12]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    13. [13]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    14. [14]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    15. [15]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    18. [18]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    19. [19]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    20. [20]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

Metrics
  • PDF Downloads(12)
  • Abstract views(990)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return