Citation: WANG Hong-Liang,  ZHAO Yue-Xia,  YANG Lei,  WU Jun-Fei,  LI Jin-Song. Development of An In-Situ Analyzer for Rapid Measurement of Dissolved Iron, Manganese and Sulfide in Deep Sea[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 1977-1985. doi: 10.19756/j.issn.0253-3820.201379 shu

Development of An In-Situ Analyzer for Rapid Measurement of Dissolved Iron, Manganese and Sulfide in Deep Sea

  • Corresponding author: ZHAO Yue-Xia, zyx@ndsc.org.cn
  • Received Date: 17 July 2020
    Revised Date: 21 June 2021

    Fund Project: Supported by the National Key R&D Program of China (Nos.2016YFC0302201, 2016YFC0302204) and the National Natural Science Foundation of China (No.41306103).

  • Deep-sea in-situ chemical analyzer can obtain data with high frequency, which is very useful for scientific research and necessary for deep-sea transportation equipment. In this work, an in-situ analyzer was developed for automated determination of dissolved Fe, Fe, Mn and sulfide simultaneously in deep sea based on continuous flow analysis and spectrophotometric detection. The integrated system consisted of a pressure-resistant housing an oil-filled pressure-compensated vessel, and a self-developed hardware to control two multi-channel peristaltic pumps, four solenoid valves and a photoelectric acquisition module. Experimental conditions related to the analysis, including flow path module, spectrometric regent compositions and pH of buffer solution were evaluated and optimized. This deep-sea in-situ chemical analyzer was designed to work at the depth of 7000 m with a measuring frequency of 1 Hz, and showed a limit of detection as low as 0.013, 0.024, 0.014, and 0.012 μmol/L for dissolved Fe, Fe, Mn and sulfide, respectively. The calibration curves prepared in standard solutions were consistent over the linear range of 0.1-60, 0.2-100, 0.1-40 and 0.1-40 μmol/L for dissolved Fe, Fe, Mn and sulfide, respectively. After the test of shallow sea, hydrostatic pressure and tank test, this analyzer was implemented on tool shed of Jiaolong deep manned submersible, and performed sea trial. Spectra and signal intensity changes of the maximum absorption wavelength were obtained in-situ at the depth of 3196 m. This compact automatic analyzer was suitable for deep sea in-situ determination of the chemical environment of hydrothermal vent habitats.
  • 加载中
    1. [1]

      LUTHER G W, ROZAN T F, TAILLEFERT M, NUZZIO D B, MEO C A D, SHANK T M, LUTZ R A, CARY S C. Nature, 2001, 410(6830):813-816.

    2. [2]

      COALE K H, CHIN C S, MASSOTH G J, JOHNSON K S, BAKER E T. Nature, 1991, 352(6333):325-328.

    3. [3]

      CHIN C S, COALE K H, ELROD V A, JOHNSON K S, MASSOTH G J, BAKER E T. J. Geophys. Res.:Solid Earth, 1994, 99(B3):4969-4984.

    4. [4]

      BRIS N L, SARRADIN P, BIROT D, ALAYSE-DANET A. Mar. Chem., 2000, 72(1):1-15.

    5. [5]

      VUILLEMIN R, ROUX D L, DORVAL P, BUCAS K, SUDREAU J P, HAMON M, GALL C L, SARRADIN P. Deep-sea Res., Part I, 2009, 56(8):1391-1399.

    6. [6]

      OKAMURA K, KIMOTO H, SAEKI K, ISHIBASHI J, OBATA H, MARUO M, GAMO T, NAKAYAMA E, NOZAKI Y. Mar. Chem., 2001, 76(1-2):17-26.

    7. [7]

      OKAMURA K, HATANAKA H, KIMOTO H, SUZUKI M, SOHRIN Y, NAKAYAMA E, GAMO T, ISHIBASHI J. Geochem. J., 2004, 38(6):635-642.

    8. [8]

      KAWAGUCCI S, OKAMURA K, KIYOTA K, TSUNOGAI U, SANO Y, TAMAKI K, GAMO T. Geochem., Geophys., Geosyst., 2008, 9:Q100002.

    9. [9]

      KOHNEN W. Mar. Technol. Soc. J., 2013, 47(5):56-68.

    10. [10]

    11. [11]

      LIU F, CUI W C, LI X Y. Sci. China Earth Sci., 2010, 53(10):1407-1410.

    12. [12]

      CUI W. Mar. Technol. Soc. J., 2013, 47(3):37-54.

    13. [13]

    14. [14]

      WANG H, YANG Q, JI F, LILLEY M D, ZHOU H. Mar. Chem., 2012, 134:29-35.

    15. [15]

      MEYER D, PRIEN R D, DELLWIG O, WANIEK J J, SCHUFFENHAUER I, DONATH J, KRUGER S, PALLENTIN M, SCHULZBULL D E. Sensors, 2016, 16(12):2027.

    16. [16]

      MOORE T S, MULLAUGH K M, HOLYOKE R R, MADISON A S, YVCE M, LUTHER G W. Annu. Rev. Mar. Sci., 2009, 1:91-115.

    17. [17]

      PRIEN R D. Mar. Chem., 2007, 107(3):422-432.

    18. [18]

      MA J, ADORNATO L, BYRNE R H, YUAN D. TrAC-Trends Anal. Chem., 2014, 60:1-15.

    19. [19]

      MA J, YUAN D, LIN K, FENG S, ZHOU T, LI Q. Trends Environ. Anal. Chem., 2016, 10:1-10.

    20. [20]

      GRAND M M, LAESHUON A, FIETZ S, RESING J A, OBATA H, LUTHER G W, TAGLIABUE A, ACHTERBERG E P, MIDDAG R, TOVARSANCHEZ A, BOWIE A R. Front. Mar. Sci., 2019, 6:1-17.

    21. [21]

    22. [22]

      CHIN C S, JOHNSON K S, COALE K H. Mar. Chem., 1992:65-82.

    23. [23]

      BEZERRA M A, LEMOS V A, DE OLIVEIRA D M, NOVAES C G, BARRETO J A, ALVES J P S, CERQUEIRA U M F, SANTOS Q D, ARAUJO S A. Microchem. J., 2020, 155:104731.

    24. [24]

      CHEN Y, FENG S, HUANG Y, YUAN D. Talanta, 2015, 137:25-30.

    25. [25]

      FENG S, HUANG Y, YUAN D, ZHU Y, ZHOU T. Cont. Shelf Res. 2015, 92:37-43.

    26. [26]

      BRIS N L, GOVENAR B, GALL C L, FISHER C R. Mar. Chem., 2006, 98(2/4):167-182.

    27. [27]

      DEMINA L L. Trace Metals in the Water of the Hydrothermal Biotopes. In:DEMINA L, GALKIN S (eds) Trace Metal Biogeochemistry and Ecology of Deep-Sea Hydrothermal Vent Systems. Cham:Springer, 2016:53-76.

    28. [28]

    29. [29]

  • 加载中
    1. [1]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    4. [4]

      Zufeng Qiu Jie Ouyang Yiru Wang Hengting Yang Xin Liao Chi Zhang Xuanyao Jiang Shunliu Deng Zhiwei Lin . 综合运用分析仪器解析“盲盒”样品——未知物的剖析. University Chemistry, 2025, 40(6): 296-302. doi: 10.12461/PKU.DXHX202405167

    5. [5]

      Ruoxi RUNJikai ZHULixia HANZhiyin XIAOXiujuan JIANGJing JIN . Red light-induced CO-release from manganese carbonyl complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2575-2583. doi: 10.11862/CJIC.20250132

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    8. [8]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    9. [9]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    10. [10]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    11. [11]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    14. [14]

      Zhiqiang XINGJinling LIUMingmin SULei ZHANGLijun YANG . CoNi dual-single-atom catalyst for electrocatalytic H2O2 production and in situ electro-Fenton degradation of pollutants. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2479-2490. doi: 10.11862/CJIC.20250181

    15. [15]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    18. [18]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    19. [19]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    20. [20]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

Metrics
  • PDF Downloads(16)
  • Abstract views(1145)
  • HTML views(246)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return