Citation: Mengyang Chen, Ye Zhou, Shi-Bin Ren, Jiong Wang. Methods to Make Conductive Covalent Organic Frameworks for Electrocatalytic Applications[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 221210. doi: 10.14102/j.cnki.0254-5861.2022-0214 shu

Methods to Make Conductive Covalent Organic Frameworks for Electrocatalytic Applications





  • Author Bio: Mengyang Chen received his PhD degree at Jilin University in 2022. In the same year, he joined School of Pharmaceutical and Materials Engineering, Taizhou University. His current research interest focuses on the synthesis of crystalline porous materials for environmental catalysis
    Ye Zhou graduated from Soochow University, and now is a master student in Soochow University. His research focuses on developing Janus materials for energy conversion and storage
    Shi-Bin Ren received his PhD degree in 2010 and worked as a postdoctoral research fellow from 2012 to 2016 in School of Chemistry and Chemical Engineering in Nanjing University. He worked also in the University of Liverpool as a visiting scholar from 2016 to 2017. Now he is a professor of School of Pharmaceutical and Chemical Engineering in Taizhou University. His interests are focused on porous materials in photocatalysis, electrocatalysis, photo/electrocatalysis and energy storage
    Jiong Wang received his Ph.D. degree in Nanjing University in 2015 and worked as a research fellow in Nanyang Technological University. He joined Soochow University as a full professor in 2021. His research focuses on heterogeneous molecular electrocatalysis for critical energy conversion and storage processes
  • Corresponding author: Shi-Bin Ren, renshibin@tzc.edu.cn Jiong Wang, wangjiong@suda.edu.cn
  • Received Date: 25 October 2022
    Accepted Date: 7 November 2022
    Available Online: 14 November 2022

Figures(14)

  • Covalent organic frameworks (COFs) represent a new class of crystalline organic polymer materials with the characteristics of high specific surface area, uniform pore distribution, high porosity, low density, devisable chain structures and good structural stability. These collective features play an important role in creating highly efficient electrocatalysts for energy conversion and fuel generation. Recent years have witnessed considerable advances in COF-based electrocatalysts for major electrocatalytic reactions such as oxygen reduction, oxygen evolution, hydrogen evolution, and reduction of carbon dioxide and nitrogen. However, it has been widely accepted that the poor electrical conductivity of most pristine COFs limits the further progress in electrocatalytic field. In this review, recent structural engineering strategies are summarized toward improving the electrical conductivity of COFs for achieving high performance. The researches of conductive COFs and their derivatives are described in detail. The structure-activity relationship between molecular structures of COFs and their electrocatalytic performance is emphasized. Lastly, current challenges and future perspectives on fabricating COFs as promising electrocatalysts are discussed. The purpose of this review is to provide guidelines for the preparation of highly efficient COF-based electrocatalytic materials with a view to replacing the commercially available noble metal-based electrocatalysts.
  • 加载中
    1. [1]

      Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.  doi: 10.1038/nature11475

    2. [2]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: insights into materials design. Science 2017, 355, 146-146.

    3. [3]

      Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210-1211.  doi: 10.1126/science.1249625

    4. [4]

      Mallouk, T. E. Divide and conquer. Nat. Chem. 2013, 5, 362-363.  doi: 10.1038/nchem.1634

    5. [5]

      Steele, B. C.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345-352.  doi: 10.1038/35104620

    6. [6]

      Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.  doi: 10.1038/nmat1368

    7. [7]

      Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 2009, 38, 89-99.  doi: 10.1039/B804323J

    8. [8]

      Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 2012, 5, 6717-6731.  doi: 10.1039/c2ee03479d

    9. [9]

      van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183-5191.  doi: 10.1039/C4CS00085D

    10. [10]

      Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060-2086.  doi: 10.1039/C4CS00470A

    11. [11]

      Peng, P.; Zhou, Z.; Guo, J.; Xiang, Z. Well-defined 2D covalent organic polymers for energy electrocatalysis. ACS Energy Lett. 2017, 2, 1308-1314.  doi: 10.1021/acsenergylett.7b00267

    12. [12]

      Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57-69.  doi: 10.1038/nmat4738

    13. [13]

      Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 2015, 5, 5207-5234.  doi: 10.1021/acscatal.5b00991

    14. [14]

      Gao, D.; Guo, J. N.; Cui, X.; Yang, L.; Yang, Y.; He, H. C.; Xiao, P.; Zhang, Y. H. Three-dimensional dendritic structures of NiCoMo as efficient electrocatalysts for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 22420-22431.  doi: 10.1021/acsami.7b04009

    15. [15]

      Yang, Y.; Zhou, M.; Guo, W. L.; Cui, X.; Li, Y. H.; Liu, F. L.; Xiao, P.; Zhang, Y. H. NiCoO2 nanowires grown on carbon fiber paper for highly efficient water oxidation. Electrochim. Acta 2015, 174, 246-253.  doi: 10.1016/j.electacta.2015.05.159

    16. [16]

      Zhao, X. Y.; Yang, Y.; Li, Y. H.; Cui, X.; Zhang, Y. H.; Xiao, P. NiCo-selenide as a novel catalyst for water oxidation. J. Mater. Sci. 2016, 51, 3724-3734.  doi: 10.1007/s10853-015-9690-9

    17. [17]

      Rong, N. N.; Chu, M. S.; Tang, Y. L.; Zhang, C.; Cui, X.; He, H. C.; Zhang, Y. H.; Xiao, P. Improved photoelectrocatalytic properties of Ti-doped BiFeO3 films for water oxidation. J. Mater. Sci. 2016, 51, 5712-5723.  doi: 10.1007/s10853-016-9873-z

    18. [18]

      Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 2005, 56, 9-35.  doi: 10.1016/j.apcatb.2004.06.021

    19. [19]

      Liu, F. L.; Xiao, P.; Tian, W. Q.; Zhou, M.; Li, Y. H.; Cui, X.; Zhang, Y. H.; Zhou, X. Hydrogenation of Pt/TiO2{101} nanobelts: a driving force for the improvement of methanol catalysis. Phys. Chem. Chem. Phys. 2015, 17, 28626-28634.  doi: 10.1039/C5CP05018A

    20. [20]

      Zheng, J. F.; Zhang, W. F.; Zhang, J. X.; Lv, M. Y.; Li, S. L.; Song, H. Y.; Cui, Z. M.; Du, L.; Liao, S. J. Recent advances in nanostructured transition metal nitrides for fuel cells. J. Mater. Chem. A 2020, 8, 20803-20818.  doi: 10.1039/D0TA06995G

    21. [21]

      Ghadikolaei, S. S. C. An enviroeconomic review of the solar PV cells cooling technology effect on the CO2 emission reduction. Sol. Energy 2021, 216, 468-492.  doi: 10.1016/j.solener.2021.01.016

    22. [22]

      Anderson, T. R.; Hawkins, E.; Jones, P. D. CO2, the greenhouse effect and global warming: from the pioneering work of arrhenius and callendar to today's earth system models. Endeavour 2016, 40, 178-187.  doi: 10.1016/j.endeavour.2016.07.002

    23. [23]

      Schwartz, S. E. Uncertainty in climate sensitivity: causes, consequences, challenges. Energy Environ. Sci. 2008, 1, 430-453.  doi: 10.1039/b810350j

    24. [24]

      Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J.; Kerfeld, C. A.; Morris, R. H.; Peden, C. H.; Portis, A. R.; Ragsdale, S. W.; Rauchfuss, T. B.; Reek, J. N.; Seefeldt, L. C.; Thauer, R. K.; Waldrop, G. L. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 2013, 113, 6621-6658.  doi: 10.1021/cr300463y

    25. [25]

      Kornienko, N.; Zhao, Y.; Kley, C. S.; Zhu, C.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 2015, 137, 14129-14135.  doi: 10.1021/jacs.5b08212

    26. [26]

      Vasileff, A.; Zheng, Y.; Qiao, S. Z. Carbon solving carbon's problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy Mater. 2017, 7, 1700759.  doi: 10.1002/aenm.201700759

    27. [27]

      Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631-675.  doi: 10.1039/C3CS60323G

    28. [28]

      Liu, X.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y.; Zhao, S.; Li, Z.; Lin, Z. Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 2017, 10, 402-434.  doi: 10.1039/C6EE02265K

    29. [29]

      Adegoke, K. A.; Adegoke, R. O.; Ibrahim, A. O.; Adegoke, S. A.; Bello, O. S. Electrocatalytic conversion of CO2 to hydrocarbon and alcohol products: Realities and prospects of Cu-based materials. Sustain. Mater. Techno. 2020, 25, e00200.

    30. [30]

      Zhou, Z. Y.; Sun, S. G. A breakthrough in electrocatalysis of CO2 conversion. Natl. Sci. Rev. 2017, 4, 155-156.  doi: 10.1093/nsr/nww083

    31. [31]

      Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. -T.; Seifitokaldani, A.; Sinton, D.; Sargent. E. H. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.  doi: 10.1002/adma.201807166

    32. [32]

      Zhang, M. D.; Yi, J. D.; Huang, Y. B.; Cao, R. Covalent triazine frameworks-derived N, P dual-doped porous carbons for highly efficient electrochemical reduction of CO2. Chin. J. Struct. Chem. 2021, 40, 1213-1222.

    33. [33]

      Lee, S.; Choi, M.; Lee, J. Looking back and looking ahead in electrochemical reduction of CO2. Chem. Rec. 2020, 20, 89-101.  doi: 10.1002/tcr.201900048

    34. [34]

      Chai, G. L.; Guo, Z. X. Highly effective sites and selectivity of nitrogen doped graphene/CNT catalysts for CO2 electrochemical reduction. Chem. Sci. 2016, 7, 1268-1275.  doi: 10.1039/C5SC03695J

    35. [35]

      Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 2013, 6, 3112-3135.  doi: 10.1039/c3ee41272e

    36. [36]

      Liu, H. Y.; Chu, J.; Yin, Z. L.; Cai, X.; Zhuang, L.; Deng, H. X. Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2. Chem 2018, 4, 1696-1709.  doi: 10.1016/j.chempr.2018.05.003

    37. [37]

      He, C.; Si, D. H.; Huang, Y. B.; Cao, R. A CO2-masked carbene functionalized covalent organic framework for highly efficient carbon dioxide conversion. Angew. Chem. Int. Ed. 2022, 61, e202207478.

    38. [38]

      Hou, Y.; Huang, Y. B.; Liang, Y. L.; Chai, G. L.; Yi, J. D.; Zhang, T.; Zang, K. T.; Luo, J.; Xu, R.; Lin, H.; Zhang, S. Y.; Wang, H. M.; Cao, R. Unraveling the reactivity and selectivity of atomically isolated metalnitrogen sites anchored on porphyrinic triazine frameworks for electroreduction of CO2. CCS Chem. 2019, 1, 384-395.  doi: 10.31635/ccschem.019.20190011

    39. [39]

      Li, N.; Si, D. H.; Wu, Q. J.; Wu, Q.; Huang, Y. B.; Cao, R. Boosting electrocatalytic CO2 reduction with conjugated bimetallic Co/Zn polyphthalocyanine frameworks. CCS Chem. 2022, https://doi.org/10.31635/ccschem.022.202201943  doi: 10.31635/ccschem.022.202201943

    40. [40]

      Wu, Q. J.; Liang, J.; Huang, Y. B. Cao, R. Thermo-, electro-, and photocatalytic CO2 conversion to value-added products over porous metal/covalent organic frameworks. Acc. Chem. Res. 2022, 55, 2978-2997.  doi: 10.1021/acs.accounts.2c00326

    41. [41]

      Rosen, J.; Hutchings, G. S.; Lu, Q.; Forest, R. V.; Moore, A.; Jiao, F. Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction. ACS Catal. 2015, 5, 4586-4591.  doi: 10.1021/acscatal.5b00922

    42. [42]

      Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209-2244.  doi: 10.1021/cr8003696

    43. [43]

      Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490-500.  doi: 10.1038/s41929-018-0092-7

    44. [44]

      Kandemir, T.; Schuster, M. E.; Senyshyn, A.; Behrens M.; Schlögl, R. The Haber-Bosch process revisited: on the real structure and stability of "ammonia iron" under working conditions. Angew. Chem. Int. Ed. 2013, 52, 12723-12726.  doi: 10.1002/anie.201305812

    45. [45]

      Cao, N.; Zheng, G. F. Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 2018, 11, 2992-3008.  doi: 10.1007/s12274-018-1987-y

    46. [46]

      Shilov, A. E. Catalytic reduction of molecular nitrogen in solutions. Russ. Chem. B+ 2003, 52, 2555-2562.  doi: 10.1023/B:RUCB.0000019873.81002.60

    47. [47]

      Martinez, S.; Morokuma, K.; Musaev, D. G. Mechanistic aspects of dinitrogen hydrogenation catalyzed by the geometry-constrained zirconium and titanium complexes: computational studies. Organometallics 2007, 26, 5978-5986.  doi: 10.1021/om700613v

    48. [48]

      Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 2013, 42, 548-568.  doi: 10.1039/C2CS35072F

    49. [49]

      Chen, X. Y.; Geng, K. Y.; Liu, R. Y.; Tan, K. T.; Gong, Y. F.; Li, Z. P.; Tao, S. S.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: chemical approaches to designer structures and built-in functions. Angew. Chem. Int. Ed. 2020, 59, 5050-5091.  doi: 10.1002/anie.201904291

    50. [50]

      Cui, X.; Lei, S.; Wang, A. C.; Guo, L. K.; Zhang, Q.; Yang, Y. K.; Lin, Z. Q. Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy 2020, 70, 104525-104548.  doi: 10.1016/j.nanoen.2020.104525

    51. [51]

      Wang, L. L.; Su, Y.; Gu. C. Solution processing of cross-linked porous organic polymers. Acc. Mater. Res. 2022, 3, 1049-1060.  doi: 10.1021/accountsmr.2c00130

    52. [52]

      Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166-1170.  doi: 10.1126/science.1120411

    53. [53]

      Peng, P.; Zhou, Z.; Guo, J.; Xiang, Z. Well-defined 2D covalent organic polymers for energy electrocatalysis. ACS Energy Lett. 2017, 2, 1308-1314.  doi: 10.1021/acsenergylett.7b00267

    54. [54]

      Ma, L.; Wang, S.; Feng, X.; Wang, B. Recent advances of covalent organic frameworks in electronic and optical applications. Chin. Chem. Lett. 2016, 27, 1383-1394.  doi: 10.1016/j.cclet.2016.06.046

    55. [55]

      Lohse, M. S.; Bein, T. Covalent organic frameworks: structures, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553.  doi: 10.1002/adfm.201705553

    56. [56]

      Bertrand, G. H.; Michaelis, V. K.; Ong, T. C.; Griffin, R. G.; Dinca, M. Thiophene-based covalent organic frameworks. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 4923-4928.  doi: 10.1073/pnas.1221824110

    57. [57]

      Wang, L. L.; Xu, C. W.; Zhang, W. Q.; Zhang, Q. L.; Zhao, M. L.; Zeng, C.; Jiang, Q. L.; Gu, C.; Ma, Y. G. Electrocleavage synthesis of solution-processed, imine-linked, and crystalline covalent organic framework thin films. J. Am. Chem. Soc. 2022, 144, 8961-8968.  doi: 10.1021/jacs.1c13072

    58. [58]

      Lin, S.; Diercks, C. S.; Zhang, Y. -B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim. D.; Yang, P. D.; Yaghi, O. M.; Chang, C. J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208-1213.  doi: 10.1126/science.aac8343

    59. [59]

      Tu, W.; Xu, Y.; Yin, S.; Xu, R. Rational design of catalytic centers in crystalline frameworks. Adv. Mater. 2018, 30, 1707582.  doi: 10.1002/adma.201707582

    60. [60]

      Wan, C. P.; Yi, J. D.; Cao, R.; Huang, Y. B. Conductive metal/ covalent organic frameworks for CO2 electroreduction. Chin. J. Struct. Chem. 2022, 41, 2205001-2205014.

    61. [61]

      Li, Z.; Zhao, W.; Yin, C.; Wei, L.; Wu, W.; Hu, Z.; Wu, M. Synergistic effects between doped nitrogen and phosphorus in metal-free cathode for zinc-air battery from covalent organic frameworks coated CNT. ACS Appl. Mater. Interfaces 2017, 9, 44519-44528.  doi: 10.1021/acsami.7b14815

    62. [62]

      Mondal, S.; Mohanty, B.; Nurhuda, M.; Dalapati, S.; Jana, R.; Addicoat, M.; Datta, A.; Jena, B. K.; Bhaumik, A. A thiadiazole-based covalent organic framework: a metal-free electrocatalyst toward oxygen evolution reaction. ACS Catal. 2020, 10, 5623-5630.  doi: 10.1021/acscatal.9b05470

    63. [63]

      Yang, C. H.; Yang, Z. -D.; Dong, H.; Sun, N.; Lu, Y.; Zhang, F. -M.; Zhang, G. L. Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER. ACS Energy Lett. 2019, 4, 2251-2258.  doi: 10.1021/acsenergylett.9b01691

    64. [64]

      Jiang, G. X.; Zhang, L. H.; Zou, W. W.; Zhang, W. F.; Wang, X. J.; Song, H. Y.; Cui, Z. M.; Du, L. Precise and controllable tandem strategy triggering boosted oxygen reduction activity. Chin. J. Catal. 2022, 43, 1042-1048.  doi: 10.1016/S1872-2067(21)63966-9

    65. [65]

      Bhadra, N. B.; Baek, Y. S.; Kim, S.; Choi, C. H.; Jhung, S. H. Oxidative denitrogenation of liquid fuel over W2N@carbon catalyst derived from a phosphotungstinic acid encapsulated metal-azolate framework. Appl. Catal. B Environ. 2021, 285, 119842-119850.  doi: 10.1016/j.apcatb.2020.119842

    66. [66]

      Guan, Q.; Zhou, L. L.; Li, Y. A.; Li, W. Y.; Wang, S. M.; Song, C.; Dong, Y. B. Nanoscale covalent organic framework for combinatorial antitumor photodynamic and photothermal therapy. ACS Nano 2019, 13, 11, 13304-13316.

    67. [67]

      Diercks, C. S.; Lin, S.; Kornienko, N.; Kapustin, E. A.; Nichols, E. M.; Zhu, C. H.; Zhao, Y. B.; Chang, C. J.; Yaghi, O. M. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 1116-1122.  doi: 10.1021/jacs.7b11940

    68. [68]

      Cheung, P. L.; Lee, S. K.; Kubiak, C. P. Facile solvent-free synthesis of thin iron porphyrin COFs on carbon cloth electrodes for CO2 reduction. Chem. Mater. 2019, 31, 1908-1919.  doi: 10.1021/acs.chemmater.8b04370

    69. [69]

      Lu, C. B.; Yang, J.; Wei, S. C.; Bi, S.; Xia, Y.; Chen, M. X.; Hou, Y.; Qiu, M.; Yuan, C.; Su, Y. Z.; Zhang, F.; Liang, H. W.; Zhuang, X. D. Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion. Adv. Funct. Mater. 2019, 29, 1806884.  doi: 10.1002/adfm.201806884

    70. [70]

      Wu, Q.; Mao, M. J.; Wu, Q. J.; Liang, J.; Huang, Y. B.; Cao, R. Construction of donor-acceptor heterojunctions in covalent organic framework for enhanced CO2 electroreduction. Small 2021, 17, 2004933.  doi: 10.1002/smll.202004933

    71. [71]

      Gong, L.; Chen, B. T.; Gao, Y.; Yu, B. Q.; Wang, Y. H.; Han, B.; Lin, C. X.; Bian, Y. Z.; Qi, D. D.; Jiang, J. Z. Covalent organic frameworks based on tetraphenyl-p-phenylenediamine and metalloporphyrin for electrochemical conversion of CO2 to CO. Inorg. Chem. Front. 2022, 9, 3217-3223.  doi: 10.1039/D2QI00336H

    72. [72]

      Zhang, M. D.; Si, D. H.; Yi, J. D.; Zhao, S. S.; Huang, Y. B.; Cao, R. Conductive phthalocyanine-based covalent organic framework for highly efficient electroreduction of carbon dioxide. Small 2020, 16, 2005254.  doi: 10.1002/smll.202005254

    73. [73]

      Wang, J.; Wang, J. R.; Qi, S. Y.; Zhao, M. W. Stable multifunctional single-atom catalysts resulting from the synergistic effect of anchored transition-metal atoms and host covalent-organic frameworks. J. Phys. Chem. C 2020, 124, 17675-17683.  doi: 10.1021/acs.jpcc.0c04360

    74. [74]

      Wang, C.; Zhao, Y. N.; Zhu, C. Y.; Zhang, M.; Geng, Y.; Li, Y. G.; Su, Z. M. A two-dimensional conductive Mo-based covalent organic framework as an efficient electrocatalyst for nitrogen fixation. J. Mater. Chem. A 2020, 8, 23599-23606.  doi: 10.1039/D0TA08676B

    75. [75]

      Jiang, M. H.; Han, L. K.; Peng, P.; Hu, Y.; Xiong, Y.; Mi, C. X.; Tie, Z. X.; Xiang, Z. H.; Jin, Z. Quasi-phthalocyanine conjugated covalent organic frameworks with nitrogen-coordinated transition metal centers for high-efficiency electrocatalytic ammonia synthesis. Nano Lett. 2022, 22, 372-379.  doi: 10.1021/acs.nanolett.1c04009

    76. [76]

      Zhao, Y. X.; Yang, Y. J.; Xia, T.; Tian, H.; Li, Y. P.; Sui, Z. Y.; Yuan, N.; Tian, X. L.; Chen, Q. Pyrimidine-functionalized covalent organic framework and its cobalt complex as an efficient electrocatalyst for oxygen evolution reaction. ChemSusChem 2021, 14, 4556-4562.  doi: 10.1002/cssc.202101434

    77. [77]

      Liang, Y.; Xia, T.; Wu, Z. Z.; Yang, Y. J.; Li, Y. P.; Sui, Z. Y.; Li, C. K.; Fan, R.; Tian, X. L.; Chen, Q. Tetrazole-functionalized two-dimensional covalent organic frameworks coordinated with metal ions for electrocatalytic oxygen evolution reaction. Mater. Today Chem. 2022, 24, 100777-100784.  doi: 10.1016/j.mtchem.2022.100777

    78. [78]

      Nandi, S.; Singh, S. K.; Mullangi, D.; Illathvalappil, R.; George, L.; Vinod, C. P.; Kurungot, S.; Vaidhyanathan, R. Low band gap benzimida-zole COF supported Ni3N as highly active OER catalyst. Adv. Energy Mater. 2016, 1601189.

    79. [79]

      Mullangi, D.; Dhavale, V.; Shalini, S.; Nandi, S.; Collins, S.; Woo, T.; Kurungot, S.; Vaidhyanathan, R. Low-overpotential electrocatalytic water splitting with noble-metal-free nanoparticles supported in a sp3 N-rich flexible COF. Adv. Energy Mater. 2016, 1600110.

    80. [80]

      Wang, Y. R.; Ding, H. M.; Ma, X. Y.; Liu, M.; Yang, Y. L.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Imparting CO2 electroreduction auxiliary for integrated morphology tuning and performance boosting in a porphyrin-based covalent organic framework. Angew. Chem. Int. Ed. 2022, 61, e202114648.

    81. [81]

      Khaligh, A.; Sheidaei, Y.; Tuncel, D. Covalent organic framework constructed by clicking azido porphyrin with perpropargyloxy-cucurbit[6]-uril for electrocatalytic hydrogen generation from water splitting. ACS Appl. Energy Mater. 2021, 4, 3535-3543.  doi: 10.1021/acsaem.0c03265

    82. [82]

      Park, J. H.; Lee, C. H.; Ju, J. M.; Lee, J. H.; Seol, J.; Lee, S. U.; Kim J. H. Bifunctional covalent organic framework-derived electrocatalysts with modulated p-band centers for rechargeable Zn-Air batteries. Adv. Funct. Mater. 2021, 31, 2101727.  doi: 10.1002/adfm.202101727

    83. [83]

      Yue, Y.; Cai, P. Y.; Xu, K.; Li, H. Y.; Chen, H. Z.; Zhou, H. C.; Huang, N. Stable bimetallic polyphthalocyanine covalent organic frameworks as superior electrocatalysts. J. Am. Chem. Soc. 2021, 143, 18052-18060.  doi: 10.1021/jacs.1c06238

    84. [84]

      Zhao, Y. X.; Liang, Y.; Wu, D. X.; Tian, H.; Xia, T.; Wang, W. X.; Xie, W. Y.; Hu, X. M.; Tian, X. L. Chen, Qi. Ruthenium complex of sp2 carbon-conjugated covalent organic frameworks as an efficient electrocatalyst for hydrogen evolution. Small 2022, 18, 2107750.  doi: 10.1002/smll.202107750

    85. [85]

      Popov, D. A.; Luna, J. M.; Orchanian, N. M.; Haiges, R.; Downes, C. A.; Marinescu, S. C. A 2, 2'-bipyridine-containing covalent organic framework bearing rhenium(I) tricarbonyl moieties for CO2 reduction. Dalton Trans. 2018, 47, 17450-17460.  doi: 10.1039/C8DT00125A

    86. [86]

      Park, E.; Jack, J.; Hu, Y. M.; Wan, S.; Huang, S. F.; Jin, Y. H.; Maness, P. -C.; Yazdi, S.; Ren, Z. Y.; Zhang, W. Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction. Nanoscale 2020, 12, 2596-2602.  doi: 10.1039/C9NR09112B

    87. [87]

      Wang, M. C.; Wang, M.; Lin, H. H.; Ballabio, M.; Zhong, H. X.; Bonn, M.; Zhou, S. Q.; Heine, T.; Cánovas, E.; Dong, R. H.; Feng, X. L. High-mobility semiconducting two-dimensional conjugated covalent organic frameworks with p-type doping. J. Am. Chem. Soc. 2020, 142, 21622-21627.  doi: 10.1021/jacs.0c10482

    88. [88]

      Jia, H. X.; Sun, Z. J.; Jiang, D. C.; Du, P. W. Covalent cobalt porphyrin framework on multiwalled carbon nanotubes for efficient water oxidation at low overpotential. Chem. Mater. 2015, 27, 4586-4593.  doi: 10.1021/acs.chemmater.5b00882

    89. [89]

      Sun, B.; Liu, J.; Cao, A.; Song, W. G.; Wang, D. Interfacial synthesis of ordered and stable covalent organic frameworks on amino-functionalized carbon nanotubes with enhanced electrochemical performance. Chem. Commun. 2017, 53, 6303-6306.  doi: 10.1039/C7CC01902E

    90. [90]

      Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170-181.  doi: 10.1038/nmat4703

    91. [91]

      Chen, X. D.; Zhang, H.; Ci, C. G.; Sun, W. W.; Wang, Y. Few-layered boronic ester based covalent organic frameworks/carbon nanotube composites for high performance K-organic batteries. ACS Nano 2019, 13, 3600-3607.  doi: 10.1021/acsnano.9b00165

    92. [92]

      Dong, H.; Lu, M.; Wang, Y.; Tang, H. L.; Wu, D.; Sun, X. J.; Zhang, F. M. Covalently anchoring covalent organic framework on carbon nanotubes for highly efficient electrocatalytic CO2 reduction. Appl. Catal. B Environ. 2022, 303, 120897-120905.  doi: 10.1016/j.apcatb.2021.120897

    93. [93]

      Lu, Y.; Zhang, J.; Wei, W. B.; Ma, D. D.; Wu, X. T.; Zhu, Q. L. Efficient carbon dioxide electroreduction over ultrathin covalent organic framework nanolayers with isolated cobalt porphyrin units. ACS Appl. Mater. Interfaces 2020, 12, 37986-37992.  doi: 10.1021/acsami.0c06537

    94. [94]

      Gan, Z. J.; Lu, S. L.; Qiu, L.; Zhu, H.; Gu, H. W.; Du, M. L. Fine tuning of supported covalent organic framework with molecular active sites loaded as efficient electrocatalyst for water oxidation. Chem. Eng. J. 2021, 415, 127850-127858.  doi: 10.1016/j.cej.2020.127850

    95. [95]

      Wu, Q.; Xie, R. K.; Mao, M. J.; Chai, G. L.; Yi, J. D.; Zhao, S. S.; Huang, Y. B.; Cao, R. Integration of strong electron transporter tetrathiafulvalene into metalloporphyrin-based covalent organic framework for highly efficient electroreduction of CO2. ACS Energy Lett. 2020, 5, 1005-1012.  doi: 10.1021/acsenergylett.9b02756

    96. [96]

      Lu, Q. Y.; Ma, Y. C.; Li, H.; Guan, X. Y.; Yusran, Y.; Xue, M.; Fang, Q. R.; Yan, Y.; Qiu S. L.; Valtchev, V. Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions. Angew. Chem. Int. Ed. 2018, 57, 6042-6048.  doi: 10.1002/anie.201712246

    97. [97]

      Chi, S. Y.; Chen, Q.; Zhao, S. S.; Si, D. H.; Wu, Q. J.; Huang, Y. B.; Cao, R. Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide. J. Mater. Chem. A 2022, 10, 4653-4659.  doi: 10.1039/D1TA10991J

    98. [98]

      Han, B.; Jin, Y. C.; Chen, B. T.; Zhou, W.; Yu, B. Q.; Wei, C. Y.; Wang, H. L.; Wang, K.; Chen, Y. L. Chen, B. L.; Jiang, J. Z. Maximizing electroactive sites in a three-dimensional covalent organic framework for significantly improved carbon dioxide reduction electrocatalysis. Angew. Chem. Int. Ed. 2022, 61, e202114244.

    99. [99]

      Quílez-bermejo, J.; Morallón, E.; Cazorla-amorós, D. Metal-free heteroatom-doped carbon-based catalysts for ORR: a critical assessment about the role of heteroatoms. Carbon 2020, 165, 434-454.  doi: 10.1016/j.carbon.2020.04.068

    100. [100]

      Chakraborty, D.; Nandi, S.; Illathvalappil, R.; Mullangi, D.; Maity, R.; Singh, S. K.; Haldar, S.; Vinod, C. P.; Kurungot, S.; Vaidhyanathan, R. Carbon derived from soft pyrolysis of a covalent organic framework as a support for small-sized RuO2 showing exceptionally low overpotential for oxygen evolution reaction. ACS Omega 2019, 4, 13465-13473.  doi: 10.1021/acsomega.9b01777

    101. [101]

      Ren, S. B.; Wang, J.; Xia, X. H. Highly efficient oxygen reduction electrocatalyst derived from a new three-dimensional polyporphyrin. ACS Appl. Mater. Interfaces 2016, 8, 25875-25880.  doi: 10.1021/acsami.6b05560

    102. [102]

      Yang, C.; Tao, S. S.; Huang, N.; Zhang, X. B.; Duan, J. G.; Makiura, R.; Maenosono, S. Heteroatom-doped carbon electrocatalysts derived from nanoporous two-dimensional covalent organic frameworks for oxygen reduction and hydrogen evolution. ACS Appl. Nano Mater. 2020, 3, 5481-5488.  doi: 10.1021/acsanm.0c00786

    103. [103]

      Roy, S.; Mari, S.; Sai, M. K.; Sarma, S. C.; Sarkar, S.; Peter, S. C. Highly efficient bifunctional oxygen reduction/evolution activity of a non-precious nanocomposite derived from a tetrazine-COF. Nanoscale 2020, 12, 22718-22734.  doi: 10.1039/D0NR05337F

    104. [104]

      Zhang, S. H.; Xia, W.; Yang, Q.; Kaneti, Y. V.; Xu, X. T.; Alshehri, S. M.; Ahamad, T.; Hossain, M. S. A.; Na, J.; Tang, J.; Yamauchi, Y. Core-shell motif construction: highly graphitic nitrogen-doped porous carbon electrocatalysts using MOF-derived carbon@COF heterostructures as sacrificial templates. Chem. Eng. J. 2020, 396, 125154-125160.  doi: 10.1016/j.cej.2020.125154

    105. [105]

      Chen, H.; Li, Q. H.; Yan, W. S.; Gu, Z. G.; Zhang, J. Templated synthesis of cobalt subnanoclusters dispersed N/C nanocages from COFs for highly-efficient oxygen reduction reaction. Chem. Eng. J. 2020, 401, 126149-126157.  doi: 10.1016/j.cej.2020.126149

    106. [106]

      Huang, N.; Lee, K. H.; Yue, Y.; Xu, X. Y.; Irle, S.; Jiang, Q. H.; Jiang, D. L. A stable and conductive metallophthalocyanine framework for electrocatalytic carbon dioxide reduction in water. Angew. Chem. Int. Ed. 2020, 59, 16587-16593.  doi: 10.1002/anie.202005274

    107. [107]

      Su, Y.; Li, B.; Xu, H.; Lu, C. Y.; Wang, S. D.; Chen, B.; Wang, Z. M.; Wang, W. T.; Otake, K. -I.; Kitagawa, S.; Huang, L. B.; Gu, C. Multi-component synthesis of a buta-1, 3-diene-linked covalent organic framework. J. Am. Chem. Soc. 2022, 144, 18218-18222.  doi: 10.1021/jacs.2c05701

  • 加载中
    1. [1]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    2. [2]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    3. [3]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    4. [4]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    5. [5]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    6. [6]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    7. [7]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    8. [8]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    9. [9]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    10. [10]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    11. [11]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    12. [12]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    13. [13]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    14. [14]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    15. [15]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    16. [16]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    17. [17]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    18. [18]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    19. [19]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    20. [20]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

Metrics
  • PDF Downloads(50)
  • Abstract views(1398)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return