Citation: Xue-Lu Ma, Meng Li, Jun-Bo Lu, Cong-Qiao Xu, Jun Li. Recent Developments of Dinitrogen Activation on Metal Complexes and Clusters[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 221208. doi: 10.14102/j.cnki.0254-5861.2022-0197 shu

Recent Developments of Dinitrogen Activation on Metal Complexes and Clusters






  • Author Bio: Xue-Lu Ma is a lecture of School of Chemical & Environmental Engineering at China University of Mining & Technology—Beijing (CUMTB). She completed her PhD in 2016 at Beijing University of Chemical Technology and worked with a postdoctoral fellowship during 2016-2018 in Tsinghua University. Her research interests focus on the computational chemistry and theoretical catalysis
    Meng Li received her BSc from Hebei Normal University of Science and Technology in 2020. She is currently studying for her master's degree at School of Chemical & Environmental Engineering, CUMTB. Her research work focuses on computational homogeneous catalysis
    Jun-Bo Lu obtained his BSc from Lanzhou University in 2015, and PhD degree from Tsinghua University in 2020 under the supervision of Prof. Jun Li. He is now working on electronic structure of lanthanide and actinide systems. His current research focuses on computational actinide chemistry, which covers the application of quantum chemistry methods in the study of small molecule activation by homogeneous catalysts containing low-valent uranium and thorium
    Cong-Qiao Xu received her PhD degree from the Department of Chemistry, Tsinghua University in 2017 under the supervision of Prof. Jun Li and then became a postdoctoral fellow at Tsinghua University from 2017 to 2019. She is currently a research associate professor at the Department of Chemistry at Southern University of Science and Technology. Her research interests focus on theoretical inorganic chemistry and computational catalysis science
    Jun Li is a Professor in Theoretical Chemistry at the Department of Chemistry, Tsinghua University, China. He received his PhD from Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences in 1992 and carried out postdoctoral research at Siegen University (Germany) and Ohio State University (USA). He then worked at the Pacific Northwest National Laboratory as a Senior Research Scientist and Chief Scientist until 2009. His research interests include f-element relativistic quantum chemistry, computational catalysis, and theoretical cluster chemistry (group website: http://www.junlilab.org)
  • Corresponding author: Jun Li, junli@tsinghua.edu.cn
  • Received Date: 16 September 2022
    Accepted Date: 4 October 2022
    Available Online: 9 October 2022

Figures(5)

  • Dinitrogen (N2) is the major component of the atmosphere and many factors bring about dinitrogen inertness with low reactivity. Dinitrogen activation on metal complexes and clusters under ambient condition is the long-standing goal in the modern chemistry. In this review, an attempt has been made to survey the mechanistic aspects of dinitrogen activation and functionalization based on different coordination binding modes of dinitrogen. Our goal is to provide a comprehensive survey of dinitrogen activation in order to guide the relevant research in the future.
  • 加载中
    1. [1]

      Himmel, H. J.; Reiher, M. Intrinsic dinitrogen activation at bare metal atoms. Angew. Chem. Int. Ed. 2006, 45, 6264-6288.  doi: 10.1002/anie.200502892

    2. [2]

      Zhan, C. G.; Nichols, J. A.; Dixon, D. A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J. Phys. Chem. A 2003, 107, 4184-4195.  doi: 10.1021/jp0225774

    3. [3]

      Hong, Q. S.; Li, T. Y.; Zheng, S. S.; Chen, H. B.; Chu, H. H.; Xu, K. D.; Li, S. N.; Mei, Z. W.; Zhao, Q. H.; Ren, W. J.; Zhao, W. G.; Pan, P. Tuning double layer structure of WO3 nanobelt for promoting the electrochemical nitrogen reduction reaction in water. Chin. J. Struct. Chem. 2021, 40, 519-526.

    4. [4]

      Stahl, S. S. Organotransition metal chemistry: from bonding to catalysis. J. Am. Chem. Soc. 2010, 132, 8524-8525.

    5. [5]

      Liu, H. M.; Wei, L.; Liu, F.; Pei, Z. X.; Shi, J.; Wang, Z. J.; He, D.; Chen, Y. Homogeneous, heterogeneous, and biological catalysts for electrochemical N2 reduction toward NH3 under ambient conditions. ACS Catal. 2019, 9, 5245-5267.  doi: 10.1021/acscatal.9b00994

    6. [6]

      Fryzuk, M. D.; Johnson, S. A. The continuing story of dinitrogen activation. Coord. Chem. Rev. 2000, 200, 379-409.

    7. [7]

      Lv, Z. J.; Wei, J. N.; Zhang, W. X.; Chen, P.; Deng, D. H.; Shi, Z. J.; Xi, Z. F. Direct transformation of dinitrogen: synthesis of N-containing organic compounds via N-C bond formation. Natl. Sci. Rev. 2020, 7, 1564-1583.  doi: 10.1093/nsr/nwaa142

    8. [8]

      Honkala, K.; Hellman, A.; Remediakis, IN.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Norskov, J. K. Ammonia synthesis from first-principles calculations. Science 2005, 307, 555-558.  doi: 10.1126/science.1106435

    9. [9]

      Logadottir, A.; Nørskov, J. K. Ammonia synthesis over a Ru (0001) surface studied by density functional calculations. J. Catal. 2003, 220, 273-279.  doi: 10.1016/S0021-9517(03)00156-8

    10. [10]

      Hoffman, B. M.; Lukoyanov, D.; Yang, Z. Y.; Dean, D. R.; Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 2014, 114, 4041-4062.  doi: 10.1021/cr400641x

    11. [11]

      Burford, R. J.; Fryzuk, M. D. Examining the relationship between coordination mode and reactivity of dinitrogen. Nat. Rev. Chem. 2017, 1, 0026.  doi: 10.1038/s41570-017-0026

    12. [12]

      Musaev, D. G. Theoretical prediction of a new dinitrogen reduction process: utilization of four dihydrogen molecules and a Zr2Pt2 cluster. J. Phys. Chem. B 2004, 108, 10012-10018.  doi: 10.1021/jp0482767

    13. [13]

      Yamabe, T.; Hori, K.; Minato, T.; Fukui, K. Theoretical study on the bonding nature of transition-metal complexes of molecular nitrogen. Inorg. Chem. 1980, 19, 2154-2159.  doi: 10.1021/ic50209a063

    14. [14]

      Holland, P. L. Metal-dioxygen and metal-dinitrogen complexes: where are the electrons? Dalton Trans. 2010, 39, 5415-5425.  doi: 10.1039/c001397h

    15. [15]

      Henderson, R. Activation of dinitrogen at binuclear sites. Transition Met. Chem. 1990, 15, 330-336.  doi: 10.1007/BF01061944

    16. [16]

      Crossland, J. L.; Tyler, D. R. Iron-dinitrogen coordination chemistry: dinitrogen activation and reactivity. Coord. Chem. Rev. 2010, 254, 1883-1894.  doi: 10.1016/j.ccr.2010.01.005

    17. [17]

      Pan, F. Can structural chemistry point the way: exploring the relevance between structure and properties. Chin. J. Struct. Chem. 2020, 39, 7.

    18. [18]

      Zhang, M. Y.; Zhang, Y. Y.; Zhang, H. X.; Wang, K.; Wang, Y. Q.; Zeng, Y. F.; Liu, G. Y. Synthesis, crystal structure and catalytic activity palladium (Ⅱ) complexes containing bulky azole ligands. Chin. J. Struct. Chem. 2020, 39, 1669-1674.

    19. [19]

      Chirik, P. J. Dinitrogen functionalization with bis(cyclopentadienyl) complexes of zirconium and hafnium. Dalton Trans. 2007, 16-25.

    20. [20]

      Pfirrmann, S.; Limberg, C.; Herwig, C.; Stößer, R.; Ziemer, B. A dinuclear nickel (Ⅰ) dinitrogen complex and its reduction in single-electron steps. Angew. Chem. Int. Ed. 2009, 48, 3357-3361.  doi: 10.1002/anie.200805862

    21. [21]

      Betley, T. A.; Peters, J. C. Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. J. Am. Chem. Soc. 2003, 125, 10782-10783.  doi: 10.1021/ja036687f

    22. [22]

      Holland, P. L. Electronic structure and reactivity of three-coordinate iron complexes. Acc. Chem. Res. 2008, 41, 905-914.  doi: 10.1021/ar700267b

    23. [23]

      Lu, J. B.; Ma, X. L.; Wang, J. Q.; Jiang, Y. F.; Li, Y.; Hu, H. S.; Xiao, H.; Li, J. The df-d dative bonding in a uranium-cobalt heterobimetallic complex for efficient nitrogen fixation. Inorg. Chem. 2019, 58, 7433-7439.  doi: 10.1021/acs.inorgchem.9b00598

    24. [24]

      Ferreira, R. B.; Murray, L. J. Cyclophanes as platforms for reactive multimetallic complexes. Acc. Chem. Res. 2019, 52, 447-455.  doi: 10.1021/acs.accounts.8b00559

    25. [25]

      Eaton, M. C.; Catalano, V. J.; Shearer, J.; Murray, L. J. Dinitrogen insertion and cleavage by a metal-metal bonded tricobalt (Ⅰ) cluster. J. Am. Chem. Soc. 2021, 143, 5649-5653.  doi: 10.1021/jacs.1c01840

    26. [26]

      Allen, A. D.; Senoff, C. V. Nitrogenopentammineruthenium (Ⅱ) complexes. Chem. Commun. (London) 1965, 621-622.

    27. [27]

      Harrison, D. F.; Weissberger, E.; Taube, H. Binuclear ion containing nitrogen as a bridging group. Science 1968, 159, 320-322.  doi: 10.1126/science.159.3812.320

    28. [28]

      Pun, D.; Lobkovsky, E.; Chirik, P. J. Indenyl zirconium dinitrogen chemistry: N2 coordination to an isolated zirconium sandwich and synthesis of side-on, end-on dinitrogen compounds. J. Am. Chem. Soc. 2008, 130, 6047-6054.  doi: 10.1021/ja801021w

    29. [29]

      Fryzuk, M. D. Side-on end-on bound dinitrogen: an activated bonding mode that facilitates functionalizing molecular nitrogen. Acc. Chem. Res. 2009, 42, 127-133.  doi: 10.1021/ar800061g

    30. [30]

      Chalkley, M. J.; Drover, M. W.; Peters, J. C. Catalytic N2-to-NH3 (or-N2H4) conversion by well-defined molecular coordination complexes. Chem. Rev. 2020, 120, 5582-5636.  doi: 10.1021/acs.chemrev.9b00638

    31. [31]

      Yandulov, D. V.; Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 2003, 301, 76-78.  doi: 10.1126/science.1085326

    32. [32]

      Arashiba, K.; Miyake, Y.; Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 2011, 3, 120-125.  doi: 10.1038/nchem.906

    33. [33]

      Anderson, J. S.; Rittle, J.; Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 2013, 501, 84-87.  doi: 10.1038/nature12435

    34. [34]

      Takahashi, T.; Mizobe, Y.; Sato, M.; Uchida, Y.; Hidai, M. Protonation reactions of molybdenum and tungsten dinitrogen complexes with halogen acids. Hydride hydrazido (2-) and diazenido complexes as intermediate stages of reduction. J. Am. Chem. Soc. 1980, 102, 7461-7467.  doi: 10.1021/ja00545a011

    35. [35]

      Oshita, H.; Mizobe, Y.; Hidai, M. Preparation and properties of molybdenum and tungsten dinitrogen complexes: XLI*. Silylation and germylation of a coordinated dinitrogen in cis-[M(N2)2(PMe2Ph)4] (M = Mo, W) using R3ECl/NaI and R3ECl/Na mixtures (E = Si, Ge). X-ray structure of trans-[WI(NNGePh3)(PMe2Ph)4]·C6H6. J. Organomet. Chem. 1993, 456, 213-220.  doi: 10.1016/0022-328X(93)80428-E

    36. [36]

      Hidai, M.; Mizobe, Y. Recent advances in the chemistry of dinitrogen complexes. Chem. Rev. 1995, 95, 1115-1133.  doi: 10.1021/cr00036a008

    37. [37]

      Tanabe, Y.; Nishibayashi, Y. Catalytic dinitrogen fixation to form ammonia at ambient reaction conditions using transition metal-dinitrogen complexes. Chem. Rec. 2016, 16, 1549-1577.  doi: 10.1002/tcr.201600025

    38. [38]

      Lee, Y.; Mankad, N. P.; Peters, J. C. Triggering N2 uptake via redox-induced expulsion of coordinated NH3 and N2 silylation at trigonal bipyramidal iron. Nat. Chem. 2010, 2, 558-565.  doi: 10.1038/nchem.660

    39. [39]

      Moret, M. -E.; Peters, J. C. N2 functionalization at iron metallaboratranes. J. Am. Chem. Soc. 2011, 133, 18118-18121.  doi: 10.1021/ja208675p

    40. [40]

      Suess, D. L.; Peters, J. C. H-H and Si-H bond addition to Fe≡NNR2 intermediates derived from N2. J. Am. Chem. Soc. 2013, 135, 4938-4941.  doi: 10.1021/ja400836u

    41. [41]

      Ung, G.; Peters, J. C. Low-temperature N2 binding to two-coordinate L2Fe0 enables reductive trapping of L2FeN2- and NH3 generation. Angew. Chem. Int. Ed. 2015, 54, 532-535.

    42. [42]

      Higuchi, J.; Kuriyama, S.; Eizawa, A.; Arashiba, K.; Nakajima, K.; Nishibayashi, Y. Preparation and reactivity of iron complexes bearing anionic carbazole-based PNP-type pincer ligands toward catalytic nitrogen fixation. Dalton Trans. 2018, 47, 1117-1121.  doi: 10.1039/C7DT04327A

    43. [43]

      Bezdek, M. J.; Guo, S.; Chirik, P. J. Terpyridine molybdenum dinitrogen chemistry: synthesis of dinitrogen complexes that vary by five oxidation states. Inorg. Chem. 2016, 55, 3117-3127.  doi: 10.1021/acs.inorgchem.6b00053

    44. [44]

      Klopsch, I.; Finger, M.; Wurtele, C.; Milde, B.; Werz, D. B.; Schneider, S. Dinitrogen splitting and functionalization in the coordination sphere of rhenium. J. Am. Chem. Soc. 2014, 136, 6881-6883.  doi: 10.1021/ja502759d

    45. [45]

      Tanaka, H.; Nishibayashi, Y.; Yoshizawa, K. Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes. Acc. Chem. Res. 2016, 49, 987-995.  doi: 10.1021/acs.accounts.6b00033

    46. [46]

      Fryzuk, M. D.; Kozak, C. M.; Bowdridge, M. R.; Patrick, B. O.; Rettig, S. J. Nitride formation by thermolysis of a kinetically stable niobium dinitrogen complex. J. Am. Chem. Soc. 2002, 124, 8389-8397.  doi: 10.1021/ja025997f

    47. [47]

      Evans, W. J.; Chamberlain, L.; Ulibarri, T. A.; Ziller, J. W. Reactivity of trimethylaluminum with (C5Me5)2Sm(THF)2: synthesis, structure, and reactivity of the samarium methyl complexes (C5Me5)2Sm[(μ-Me)AlMe2-(μ-Me)]2Sm(C5Me5)2 and (C5Me5)2SmMe(THF). J. Am. Chem. Soc. 1988, 110, 6423-6432.  doi: 10.1021/ja00227a023

    48. [48]

      MacLachlan, E. A.; Fryzuk, M. D. Synthesis and reactivity of side-on-bound dinitrogen metal complexes. Organometallics 2006, 25, 1530-1543.  doi: 10.1021/om051055i

    49. [49]

      Ma, X.; Tang, Y.; Lei, M. Bent and planar structures of μ-η2: η2-N2 dinuclear early transition metal complexes. Dalton Trans. 2014, 43, 11658-11666.  doi: 10.1039/C4DT00646A

    50. [50]

      Ding, K. Y.; Pierpont, A. W.; Brennessel, W. W.; Lukat-Rodgers, G.; Rodgers, K. R.; Cundari, T. R.; Bill, E.; Holland, P. L. Cobalt-dinitrogen complexes with weakened N-N bonds. J. Am. Chem. Soc. 2009, 131, 9471-9472.  doi: 10.1021/ja808783u

    51. [51]

      Fryzuk, M. D.; Love, J. B.; Rettig, S. J.; Young, V. G. Transformation of coordinated dinitrogen by reaction with dihydrogen and primary silanes. Science 1997, 275, 1445-1447.  doi: 10.1126/science.275.5305.1445

    52. [52]

      Falcone, M.; Chatelain, L.; Scopelliti, R.; Živković, I.; Mazzanti, M. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex. Nature 2017, 547, 332-335.  doi: 10.1038/nature23279

    53. [53]

      Fryzuk, M. D.; Johnson, S. A.; Rettig, S. J. New mode of coordination for the dinitrogen ligand: a dinuclear tantalum complex with a bridging N2 unit that is both side-on and end-on. J. Am. Chem. Soc. 1998, 120, 11024-11025.  doi: 10.1021/ja982377z

    54. [54]

      Fryzuk, M. D.; Johnson, S. A.; Patrick, B. O.; Albinati, A.; Mason, S. A.; Koetzle, T. F. New mode of coordination for the dinitrogen ligand: formation, bonding, and reactivity of a tantalum complex with a bridging N2 unit that is both side-on and end-on. J. Am. Chem. Soc. 2001, 123, 3960-3973.  doi: 10.1021/ja0041371

    55. [55]

      Figg, T. M.; Holland, P. L.; Cundari, T. R. Cooperativity between low-valent iron and potassium promoters in dinitrogen fixation. Inorg. Chem. 2012, 51, 7546-7550.  doi: 10.1021/ic300150u

    56. [56]

      MacLeod, K. C.; Vinyard, D. J.; Holland, P. L. A multi-iron system capable of rapid N2 formation and N2 cleavage. J. Am. Chem. Soc. 2014, 136, 10226-10229.  doi: 10.1021/ja505193z

    57. [57]

      Singh, D.; Buratto, W. R.; Torres, J. F.; Murray, L. J. Activation of dinitrogen by polynuclear metal complexes. Chem. Rev. 2020, 120, 5517-5581.  doi: 10.1021/acs.chemrev.0c00042

    58. [58]

      Smith, J. M.; Sadique, A. R.; Cundari, T. R.; Rodgers, K. R.; Lukat-Rodgers, G.; Lachicotte, R. J.; Flaschenriem, C. J.; Vela, J.; Holland, P. L. Studies of low-coordinate iron dinitrogen complexes. J. Am. Chem. Soc. 2006, 128, 756-769.  doi: 10.1021/ja052707x

    59. [59]

      Chiang, K. P.; Bellows, S. M.; Brennessel, W. W.; Holland, P. L. Multimetallic cooperativity in activation of dinitrogen at iron-potassium sites. Chem. Sci. 2014, 5, 267-274.  doi: 10.1039/C3SC52487F

    60. [60]

      McWilliams, S. F.; Holland, P. L. Dinitrogen binding and cleavage by multinuclear iron complexes. Acc. Chem. Res. 2015, 48, 2059-2065.  doi: 10.1021/acs.accounts.5b00213

    61. [61]

      Reiners, M.; Baabe, D.; Munster, K.; Zaretzke, M. K.; Freytag, M.; Jones, P. G.; Coppel, Y.; Bontemps, S.; del Rosal, I.; Maron, L.; Walter, M. D. NH3 formation from N2 and H2 mediated by molecular tri-iron complexes. Nat. Chem. 2020, 12, 740-746.  doi: 10.1038/s41557-020-0483-7

    62. [62]

      Xin, X.; Douair, I.; Zhao, Y.; Wang, S.; Maron, L.; Zhu, C. Dinitrogen cleavage by a heterometallic cluster featuring multiple uranium-rhodium bonds. J. Am. Chem. Soc. 2020, 142, 15004-15011.  doi: 10.1021/jacs.0c05788

    63. [63]

      Jori, N.; Barluzzi, L.; Douair, I.; Maron, L.; Fadaei-Tirani, F.; Zivkovic, I.; Mazzanti, M. Stepwise reduction of dinitrogen by a uranium-potassium complex yielding a U(Ⅵ)/U(Ⅳ) tetranitride cluster. J. Am. Chem. Soc. 2021, 143, 11225-11234.  doi: 10.1021/jacs.1c05389

    64. [64]

      Forrest, S. J.; Schluschaß, B.; Yuzik-Klimova, E. Y.; Schneider, S. Nitrogen fixation via splitting into nitrido complexes. Chem. Rev. 2021, 121, 6522-6587.  doi: 10.1021/acs.chemrev.0c00958

    65. [65]

      Cui, C. N.; Zhang, H. Y.; Luo, Z. X.; Pan, F. Preparation and reaction of naked metal clusters for catalysis and genetic materials. Chin. J. Struct. Chem. 2020, 39, 989-998.

    66. [66]

      Han, Y.; Jiang, Y.; Yang, J. J.; Lin, S. C.; Tang, Z. C.; Zheng, L. S. Tuning solvent composition to enhance the stability of metal clusters in mass spectrometry. Chin. J. Struct. Chem. 2022, 41, 2204034-2204039.

    67. [67]

      Kuganathan, N.; Green, J. C.; Himmel, H. -J. Dinitrogen fixation and activation by Ti and Zr atoms, clusters and complexes. New J. Chem. 2006, 30, 1253-1262.  doi: 10.1039/b606328d

    68. [68]

      Zhao, Y.; Cui, J. T.; Wang, M.; Valdivielso, D. Y.; Fielicke, A.; Hu, L. R.; Cheng, X.; Liu, Q. Y.; Li, Z. Y.; He, S. G.; Ma, J. B. Dinitrogen fixation and reduction by Ta3N3H0, 1- cluster anions at room temperature: hydrogen-assisted enhancement of reactivity. J. Am. Chem. Soc. 2019, 141, 12592-12600.  doi: 10.1021/jacs.9b03168

    69. [69]

      Li, Z. Y.; Mou, L. H.; Wei, G. P.; Ren, Y.; Zhang, M. Q.; Liu, Q. Y.; He, S. G. C-N coupling in N2 fixation by the ditantalum carbide cluster anions Ta2C4-. Inorg. Chem. 2019, 58, 4701-4705.  doi: 10.1021/acs.inorgchem.8b03502

    70. [70]

      Geng, C.; Li, J.; Weiske, T.; Schwarz, H. Complete cleavage of the N≡N triple bond by Ta2N+ via degenerate ligand exchange at ambient temperature: a perfect catalytic cycle. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 21416-21420.  doi: 10.1073/pnas.1913664116

    71. [71]

      Li, Z. Y.; Li, Y.; Mou, L. H.; Chen, J. J.; Liu, Q. Y.; He, S. G.; Chen, H. A facile N≡N bond cleavage by the trinuclear metal center in vanadium carbide cluster anions V3C4-. J. Am. Chem. Soc. 2020, 142, 10747-10754.  doi: 10.1021/jacs.0c02021

    72. [72]

      Wang, X. Y.; Peng, X. B.; Zhang, Y. F.; Ni, J.; Au, C. T.; Jiang, L. L. Efficient ammonia synthesis over a core-shell Ru/CeO2 catalyst with a tunable CeO2 size: DFT calculations and XAS spectroscopy studies. Inorg. Chem. Front. 2019, 6, 396-406.  doi: 10.1039/C8QI01244J

    73. [73]

      Himmel, H. J.; Hübner, O.; Klopper, W.; Manceron, L. Cleavage of the N2 triple bond by the Ti dimer: a route to molecular materials for dinitrogen activation? Angew. Chem. Int. Ed. 2006, 45, 2799-2802.  doi: 10.1002/anie.200503709

    74. [74]

      Zhou, M.; Jin, X.; Gong, Y.; Li, J. Remarkable dinitrogen activation and cleavage by the Gd dimer: from dinitrogen complexes to ring and cage nitrides. Angew. Chem. Int. Ed. 2007, 46, 2911-2914.  doi: 10.1002/anie.200605218

    75. [75]

      Gong, Y.; Zhao, Y.; Zhou, M. Formation and characterization of the tetranuclear scandium nitride: Sc4N4. J. Phys. Chem. A. 2007, 111, 6204-6207.  doi: 10.1021/jp070816n

    76. [76]

      Jiang, G. D.; Li, Z. Y.; Mou, L. H.; He, S. G. Dual iron sites in activation of N2 by iron-sulfur cluster anions Fe5S2- and Fe5S3-. J. Phys. Chem. Lett. 2021, 12, 9269-9274.  doi: 10.1021/acs.jpclett.1c02683

    77. [77]

      Mou, L. H.; Li, Y.; Li, Z. Y.; Liu, Q. Y.; Ren, Y.; Chen, H.; He, S. G. Dinitrogen activation and functionalization by heteronuclear metal cluster anions FeV2C2- at room temperature. J. Phys. Chem. Lett. 2020, 11, 9990-9994.  doi: 10.1021/acs.jpclett.0c02921

    78. [78]

      Ma, X. L.; Liu, J. C.; Xiao, H.; Li, J. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J. Am. Chem. Soc. 2018, 140, 46-49.  doi: 10.1021/jacs.7b10354

    79. [79]

      Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.  doi: 10.1038/s41467-018-03795-8

    80. [80]

      Cherkasov, N.; Ibhadon, A.; Fitzpatrick, P. A review of the existing and alternative methods for greener nitrogen fixation. Chem. Eng. Process. 2015, 90, 24-33.  doi: 10.1016/j.cep.2015.02.004

    81. [81]

      Zhang, X.; Chen, A.; Zhang, Z.; Zhou, Z. Double-atom catalysts: transition metal dimer-anchored C2N monolayers as N2 fixation electrocatalysts. J. Mater. Chem. A 2018, 6, 18599-18604.  doi: 10.1039/C8TA07683A

    82. [82]

      Chen, Z. W.; Yan, J. M.; Jiang, Q. Single or double: which is the altar of atomic catalysts for nitrogen reduction reaction? Small Methods 2019, 3, 1800291.  doi: 10.1002/smtd.201800291

    83. [83]

      Han, B.; Meng, H.; Li, F.; Zhao, J. Fe3 cluster anchored on the C2N monolayer for efficient electrochemical nitrogen fixation. Catalysts 2020, 10, 974.  doi: 10.3390/catal10090974

    84. [84]

      Ma, D.; Zeng, Z.; Liu, L.; Huang, X.; Jia, Y. Computational evaluation of electrocatalytic nitrogen reduction on TM single-, double-, and triple-atom catalysts (TM = Mn, Fe, Co, Ni) based on graphdiyne monolayers. J. Phys. Chem. C 2019, 123, 19066-19076.  doi: 10.1021/acs.jpcc.9b05250

    85. [85]

      Li, M.; Cui, Y.; Zhang, X.; Luo, Y.; Dai, Y.; Huang, Y. Screening a suitable Mo form supported on graphdiyne for effectively electrocatalytic N2 reduction reaction: from atomic catalyst to cluster catalyst. J. Phys. Chem. Lett. 2020, 11, 8128-8137.  doi: 10.1021/acs.jpclett.0c02354

    86. [86]

      Chen, Z. W.; Chen, L. X.; Jiang, M.; Chen, D.; Wang, Z. L.; Yao, X.; Singh, C. V.; Jiang, Q. A triple atom catalyst with ultrahigh loading potential for nitrogen electrochemical reduction. J. Mater. Chem. A 2020, 8, 15086-15093.  doi: 10.1039/D0TA04919K

    87. [87]

      Zheng, G.; Li, L.; Tian, Z.; Zhang, X.; Chen, L. Heterogeneous single-cluster catalysts (Mn3, Fe3, Co3, and Mo3) supported on nitrogen-doped graphene for robust electrochemical nitrogen reduction. J. Energy Chem. 2021, 54, 612-619.  doi: 10.1016/j.jechem.2020.06.048

    88. [88]

      Cui, C. N.; Zhang, H. C.; Luo, Z. X. Nitrogen reduction reaction on small iron clusters supported by N-doped graphene: a theoretical study of the atomically precise active-site mechanism. Nano Res. 2020, 13, 2280-2288.  doi: 10.1007/s12274-020-2847-0

    89. [89]

      Zhang, H. C.; Cui, C. N.; Luo, Z. X. MoS2-supported Fe2 clusters catalyzing nitrogen reduction reaction to produce ammonia. J. Phys. Chem. C 2020, 124, 6260-6266.  doi: 10.1021/acs.jpcc.0c00486

    90. [90]

      Yao, C. H.; Guo, N.; Xi, S. B.; Xu, C. Q.; Liu, W.; Zhao, X. X.; Li, J.; Fang, H. Y.; Su, J.; Chen, Z. X. Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun. 2020, 11, 4389.  doi: 10.1038/s41467-020-18080-w

    91. [91]

      Ma, X. L.; Yang, Y.; Xu, L. M.; Xiao, H.; Yao, W. Z.; Li, J. Theoretical investigation on hydrogenation of dinitrogen triggered by singly dispersed bimetallic sites. J. Mater. Chem. A 2022, 10, 6146-6152.  doi: 10.1039/D1TA08350C

    92. [92]

      Luo, Y.; Li, M.; Dai, Y.; Zhao, R.; Jiang, F.; Wang, S.; Huang, Y. Transition metal-modified Co4 clusters supported on graphdiyne as an effective nitrogen reduction reaction electrocatalyst. Inorg. Chem. 2021, 60, 18251-18259.  doi: 10.1021/acs.inorgchem.1c02880

    93. [93]

      Wang, Q.; Pan, J.; Guo, J.; Hansen, H. A.; Xie, H.; Jiang, L.; Hua, L.; Li, H.; Guan, Y.; Wang, P. Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism. Nat. Catal. 2021, 4, 959-967.  doi: 10.1038/s41929-021-00698-8

    94. [94]

      Liu, C.; Wang, Q.; Guo, J.; Vegge, T.; Chen, P.; Hansen, H. A. Formation of a complex active center by Ba2RuH6 for nondissociative dinitrogen activation and ammonia formation. ACS Catal. 2022, 12, 4194-4202.  doi: 10.1021/acscatal.2c00180

    95. [95]

      Wang, X. Y.; Li, L. L.; Fang, Z. P.; Zhang, Y. F.; Ni, J.; Lin, B. Y.; Zheng, L. R.; Au, C. -T.; Jiang, L. L. Atomically dispersed Ru catalyst for low-temperature nitrogen activation to ammonia via an associative mechanism. ACS Catal. 2020, 10, 9504-9514.  doi: 10.1021/acscatal.0c00549

    96. [96]

      Wang, X. Y.; Peng, X. B.; Chen, W.; Liu, G. Y.; Zheng, A. M.; Zheng, L. R.; Ni, J.; Au, C. T.; Jiang, L. L. Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst. Nat. Commun. 2020, 11, 653.  doi: 10.1038/s41467-020-14287-z

    97. [97]

      Hu, H. S.; Xu, X.; Xu, C.; Li. J. Recent progresses in experimental and theoretical studies of actinide clusters. Chin. J. Struct. Chem. 2020, 39, 1201-1212.

    98. [98]

      Liu, J. C.; Xiao, H.; Zhao, X. K.; Zhang, N. N.; Liu, Y.; Xing, D. H.; Yu, X. H.; Hu, H. S.; Li, J. Computational prediction of graphdiyne-supported three-atom single-cluster catalysts. CCS Chem. 2022, DOI: 10.31635/ccschem.022.202201796.  doi: 10.31635/ccschem.022.202201796

  • 加载中
    1. [1]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    2. [2]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    3. [3]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    4. [4]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    5. [5]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    6. [6]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    7. [7]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    8. [8]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    9. [9]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    10. [10]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    11. [11]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    12. [12]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    13. [13]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    14. [14]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    15. [15]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    16. [16]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    17. [17]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    18. [18]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    19. [19]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    20. [20]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

Metrics
  • PDF Downloads(28)
  • Abstract views(1216)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return