Citation: Xu-Feng Luo, Jie He, Yang Wang, Dai Hong, Zheng-Guang Wu. Research Advances in Helicene Structure-Based Chiral Luminescent Materials and Their Circularly Polarized Electroluminescence[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 221207. doi: 10.14102/j.cnki.0254-5861.2022-0196 shu

Research Advances in Helicene Structure-Based Chiral Luminescent Materials and Their Circularly Polarized Electroluminescence






  • Author Bio: Xu-Feng Luo received his Ph.D. degree in 2022 at Nanjing University under the supervisor of Professor You-Xuan Zheng from 2017 to 2022. Now he joined the Ningbo University of Technology. His research focuses on MR-TADF materials, phosphorescence metal complexes and CPL materials and their applications in optoelectronic device
    Jie He received his B.S. degree at the Nantong University in 2019. He is currently an M.S. candidate in the School of Chemistry and Chemical Engineering, Nantong University, supervised by Prof
    Yang Wang obtained his B.S. and M.S. degree in chemistry from Jiangsu Normal University under the supervisor of Prof. Feng Shi in 2016. Then, he joined professor Wen-Hua Zheng's group and received his Ph.D. from Nanjing University in 2019. He is currently a lecturer at the School of Chemistry and Chemical Engineering, Nantong University, where his research focuses on the construction of chiral nitrogen heterocycles via asymmetric oxidative strategies
    Hong Dai received his PhD degree from Nankai University under the supervision of Prof. Jianxin Fang in 2009. He joined Nantong University in 2009, and was promoted as Professor in 2018. Currently, his research is focused on the design and synthesis of chiral heterocycles for pesticide molecules and photoelectric materials
    Zheng-Guang Wu, Professor, received his Ph.D. degree in Organic Chemistry in 2017 at Nanjing University under the supervisor of Prof. Yi Pan and You-Xuan Zheng. From 2017 to 2019, he worked as a postdoctoral fellow in State Key Laboratory of Coordination Chemistry in Nanjing University. He joined Nantong University in 2020 and his research interest focuses on the design and synthesis of inorganic and organic functional materials, chiral luminescent materials and their applications in optoelectronic device
  • # These authors contribute equally to this work.
  • Received Date: 14 September 2022
    Accepted Date: 4 October 2022
    Available Online: 12 October 2022

Figures(15)

  • Benefited from direct generation of circularly polarized (CP) emission with tunable colors, high efficiencies and facile device architectures, CP organic light-emitting diodes (CP-OLEDs) have attracted great attention and are expected to meet industrial applications. Particularly, CP electroluminescence (CPEL) originated from CP-OLEDs has wide potential applications in 3D displays, optical information storage, quantum communication, and biological sensors. The diverse design strategies of chiral luminescent materials for CP-OLEDs, including small organic emitters, lanthanide and transition-metal complexes and conjugated polymers, have been extensively explored. Helicene with twisted extended π-conjugated molecular structure could exhibit special helical chirality and excellent circularly polarized luminescence properties, which has been employed as the ingenious chirality core for constructing efficient chiral luminescent materials. In addition, significant improvements have been made in terms of CP photoluminescence research, however, the development of CPEL with more application prospects in optoelectronic technology still lags behind. In this review, we systematically summarize the recent advances in chiral luminescent materials based on helicene structure and their CPEL properties, including helicene-based chiral fluorescence molecules, transition metal complexes and thermally activated delayed fluorescence molecules, and discuss current challenges and future perspectives for this hot research field. We believe this progress report will provide a promising perspective of OLEDs based on helicene emitters with CPEL properties for extensive researchers, including chemical, physical and material scientists in different disciplinary fields and attract them to this rapidly developing field.
  • 加载中
    1. [1]

      Huck, N. P. M.; Jager, W. F.; Lange, B. D.; Feringa, B. L. Dynamic control and amplification of molecular chirality by circular polarized light. Science 1996, 273, 1686-1688.  doi: 10.1126/science.273.5282.1686

    2. [2]

      Cao, Z.; Wang, B.; Zhu, F.; Hao, A.; Xing, P. Solvent-processed circularly polarized luminescence in light-harvesting coassemblies. ACS Appl. Mater. Interfaces 2020, 12, 34470-34478.  doi: 10.1021/acsami.0c10559

    3. [3]

      Fan, H.; Li, K.; Tu, T.; Zhu, X.; Zhang, L.; Liu, M. ATP-induced emergent circularly polarized luminescence and encryption. Angew. Chem. Int. Ed. 2022, 61, e202200727.

    4. [4]

      MacKenzie, L. E.; Pal, R. Circularly polarized lanthanide luminescence for advanced security inks. Nat. Rev. Chem. 2021, 5, 109-124.

    5. [5]

      Zhang, D. W.; Li, M.; Chen, C. F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 2020, 49, 1331-1343.  doi: 10.1039/C9CS00680J

    6. [6]

      Li, X.; Xie, Y.; Li, Z. The progress of circularly polarized luminescence in chiral purely organic materials. Adv. Photonics Res. 2021, 2, 2000136.  doi: 10.1002/adpr.202000136

    7. [7]

      Liu, L.; Yang, Y.; Wei, Z. Chiral organic optoelectronic materials and circularly polarized light luminescence and detection. Acta Chim. Sinica 2022, 80, 970-992.  doi: 10.6023/A22030123

    8. [8]

      Ma, J. L.; Peng, Q.; Zhao, C. H. Circularly polarized luminescence switching in small organic molecules. Chem. Eur. J. 2019, 25, 15441-15454.  doi: 10.1002/chem.201903252

    9. [9]

      Luo, X. Y.; Pan, M. Metal-organic materials with circularly polarized luminescence. Coordin. Chem. Rev. 2022, 468, 214640.  doi: 10.1016/j.ccr.2022.214640

    10. [10]

      Zhang, Y.; Yu, S.; Han, B.; Zhou, Y.; Zhang, X.; Gao, X.; Tang, Z. Circularly polarized luminescence in chiral materials. Matter 2022, 5, 837-875.  doi: 10.1016/j.matt.2022.01.001

    11. [11]

      Hasegawa, M.; Nojima, Y.; Mazaki, Y. Circularly polarized luminescence in chiral π-conjugated macrocycles. ChemPhotoChem 2021, 5, 1042-1058.  doi: 10.1002/cptc.202100162

    12. [12]

      Gao, J. X.; Zhang, W. Y.; Wu, Z. G.; Zheng, Y, X.; Fu, D. W. Enantiomorphic perovskite ferroelectrics with circularly polarized luminescence. J. Am. Chem. Soc. 2020, 142, 4756-4761.  doi: 10.1021/jacs.9b13291

    13. [13]

      Chen, Y. Circularly polarized luminescence based on small organic fluorophores. Mater. Today. Chem. 2022, 23, 100651.  doi: 10.1016/j.mtchem.2021.100651

    14. [14]

      Ni, B.; Li, Y.; Liu, W.; Li, B.; Li, H.; Yang, Y. Circularly polarized luminescence from structurally coloured polymer films. Chem. Commun. 2021, 57, 2796-2799.  doi: 10.1039/D1CC00201E

    15. [15]

      Liang, X.; Liu, T. T.; Yan, Z. P.; Zhou, Y.; Su, J.; Luo, X. F.; Wu, Z. G.; Wang, Y.; Zheng, Y. X.; Zuo, J. L. Organic room-temperature phosphorescence with strong circularly polarized luminescence based on paracyclophanes. Angew. Chem. Int. Ed. 2019, 58, 17220-17225.  doi: 10.1002/anie.201909076

    16. [16]

      Roose, J.; Tang, B. Z.; Wong, K. S. Circularly-polarized luminescence (CPL) from chiral AIE molecules and macrostructures. Small 2016, 12, 6495-6512.  doi: 10.1002/smll.201601455

    17. [17]

      Chen, N.; Yan, B. Recent theoretical and experimental progress in circularly polarized luminescence of small organic molecules. Molecules 2018, 23, 3376.  doi: 10.3390/molecules23123376

    18. [18]

      Li, M.; Lin, W. B.; Fang, L.; Chen, C. F. Recent progress on circularly polarized luminescence of chiral organic small molecules. Acta Chim. Sinica 2017, 75, 1150-1163.  doi: 10.6023/A17090440

    19. [19]

      Han, J.; Guo, S.; Lu, H.; Liu, S.; Zhao, Q.; Huang, W. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Adv. Optical Mater. 2018, 6, 1800538.  doi: 10.1002/adom.201800538

    20. [20]

      Zhou, L.; Xie, G.; Ni, F.; Yang, C. Emerging circularly polarized thermally activated delayed fluorescence materials and devices. Appl. Phys. Lett. 2020, 117, 130502.  doi: 10.1063/5.0021127

    21. [21]

      Frédéric, L.; Desmarchelier, A.; Favereau, L.; Pieters, G. Designs and applications of circularly polarized thermally activated delayed fluorescence molecules. Adv. Funct. Mater. 2021, 31, 2010281.  doi: 10.1002/adfm.202010281

    22. [22]

      Zhang, Y. P.; Zheng, Y. X. Frontiers in chiral phosphorescent complexes for circularly polarized electroluminescence. Dalton Trans. 2022, 51, 9966-9970.  doi: 10.1039/D2DT01582J

    23. [23]

      Peeters, E.; Christiaans. M. P. T.; Janssen, R. A. J.; Schoo, H. F. M.; Dekkers, H. P. J. M.; Meijer, E. W. Circularly polarized electroluminescence from a polymer light-emitting diode. J. Am. Chem. Soc. 1997, 119, 9909-9910.  doi: 10.1021/ja971912c

    24. [24]

      Liang, X.; Tu, Z. L.; Zheng, Y. X. Thermally activated delayed fluorescence materials: towards realization of high efficiency through strategic small molecular design. Chem. Eur. J. 2019, 25, 5623-5642.  doi: 10.1002/chem.201805952

    25. [25]

      Wong, M. Y.; Zysman-Colman, E. Purely or ganic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater. 2017, 29, 1605444.  doi: 10.1002/adma.201605444

    26. [26]

      Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 2014, 26, 7931-7958.  doi: 10.1002/adma.201402532

    27. [27]

      Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 2017, 46, 915-1016.  doi: 10.1039/C6CS00368K

    28. [28]

      Im, Y.; Kim, M.; Cho, Y. J.; Seo, J. A.; Yook, K. S.; Lee, J. Y. Molecular design strategy of organic thermally activated delayed fluorescence emitters. Chem. Mater. 2017, 29, 1946-1963.  doi: 10.1021/acs.chemmater.6b05324

    29. [29]

      Jeon, S. K.; Lee, H. L.; Yook, K. S.; Lee, J. Y. Recent progress of the lifetime of organic light-emitting diodes based on thermally activated delayed fluorescent material. Adv. Mater. 2019, 31, 1803524.  doi: 10.1002/adma.201803524

    30. [30]

      Kim, K. H.; Kim, J. J. Origin and control of orientation of phosphorescent and TADF dyes for high-efficiency OLEDs. Adv. Mater. 2018, 30, 1705600.  doi: 10.1002/adma.201705600

    31. [31]

      Zinna, F.; Giovanella, U.; Bari, L. D. Highly circularly polarized electroluminescence from a chiral europium complex. Adv. Mater. 2015, 27, 1791-1795.  doi: 10.1002/adma.201404891

    32. [32]

      Zinna, F.; Pasini, M.; Galeotti, F.; Botta, C.; Bari, L. D.; Giovanella, U. Design of lanthanide-based OLEDs with remarkable circularly polarized electroluminescence. Adv. Funct. Mater. 2017, 27, 1603719.  doi: 10.1002/adfm.201603719

    33. [33]

      Li, M.; Li, S. H.; Zhang, D.; Cai, M.; Duan, L.; Fung, M. K.; Chen, C. F. Stable enantiomers displaying thermally activated delayed fluorescence: efficient OLEDs with circularly polarized electroluminescence. Angew. Chem. Int. Ed. 2018, 57, 2889-2893.  doi: 10.1002/anie.201800198

    34. [34]

      Li, T. Y.; Jing, Y. M.; Liu, X.; Zhao, Y.; Shi, L.; Tang, Z.; Zheng, Y. X.; Zuo, J. L. Circularly polarized phosphorescent photoluminescence and electroluminescence of iridium complexes. Sci. Rep. 2015, 5, 14912.  doi: 10.1038/srep14912

    35. [35]

      Yang, S. Y.; Wang, Y. K.; Peng, C. C.; Wu, Z. G.; Yuan, S.; Yu, Y. J.; Li, H.; Wang, T. T.; Li, H. C.; Zheng, Y. X.; Jiang, Z. Q.; Liao, L. S. Circularly polarized thermally activated delayed fluorescence emitters in through-space charge transfer on asymmetric spiro skeletons. J. Am. Chem. Soc. 2020, 142, 17756-17765.  doi: 10.1021/jacs.0c08980

    36. [36]

      Chen, Y.; Li, X.; Li, N.; Quan, Y.; Cheng, Y.; Tang, Y. Strong circularly polarized electroluminescence based on chiral salen-Zn(Ⅱ) complex monomer chromophores. Mater. Chem. Front. 2019, 3, 867-873.  doi: 10.1039/C9QM00039A

    37. [37]

      Yang, Y.; Li, N.; Miao, J.; Cao, X.; Ying, A.; Pan, K.; Lv, X.; Ni, F.; Huang, Z.; Gong, S.; Yang, C. Chiral multi-resonance TADF emitters exhibiting narrowband circularly polarized electroluminescence with an EQE of 37.2%. Angew. Chem. Int. Ed. 2022, 61, e202202227.

    38. [38]

      Zhang, D. W.; Teng, J. M.; Wang, Y. F.; Han, X. N.; Li, M.; Chen, C. F. D-π*-A type planar chiral TADF materials for efficient circularly polarized electroluminescence. Mater. Horiz. 2021, 8, 3417-3423.  doi: 10.1039/D1MH01404H

    39. [39]

      Wu, Z. G.; Han, H. B.; Yan, Z. P.; Luo, X. F.; Wang, Y.; Zheng, Y. X.; Zuo, J. L.; Pan, Y. Chiral octahydro-binaphthol compound-based thermally activated delayed fluorescence materials for circularly polarized electroluminescence with superior EQE of 32.6% and extremely low efficiency roll-off. Adv. Mater. 2019, 1900524.

    40. [40]

      Liang, Z. P.; Tang, R.; Qiu, Y. C.; Wang, Y.; Lu, H.; Wu, Z. G. Construction and properties of octahydrobinaphthol-based chiral luminescent materials with large steric hindrance. Acta Chim. Sinica 2021, 79, 1401-1408.  doi: 10.6023/A21070355

    41. [41]

      Shen, Y.; Chen, C. F. Helicenes: synthesis and applications. Chem. Rev. 2012, 112, 1463-1535.  doi: 10.1021/cr200087r

    42. [42]

      Zhao, W. L.; Li, M.; Lu, H. Y.; Chen, C. F. Advances in helicene derivatives with circularly polarized luminescence. Chem. Commun. 2019, 55, 13793-13803.  doi: 10.1039/C9CC06861A

    43. [43]

      Shen, C.; Gan, F.; Zhang, G.; Ding, Y.; Wang, J.; Wang, R.; Crassous, J.; Qiu, H. Helicene-derived aggregation-induced emission conjugates with highly tunable circularly polarized luminescence. Mater. Chem. Front. 2020, 4, 837-844.  doi: 10.1039/C9QM00652D

    44. [44]

      Zhao, Z. H.; Liang, X.; He, M. X.; Zhang, M. Y.; Zhao, C. H. Triarylborane-based [5]helicenes with full-color circularly polarized luminescence. Org. Lett. 2019, 21, 9569-9573.  doi: 10.1021/acs.orglett.9b03734

    45. [45]

      Zhu, Y.; Xia, Z.; Cai, Z.; Yuan, Z.; Jiang, N.; Li, T.; Wang, Y.; Guo, X.; Li, Z.; Ma, S.; Zhong, D.; Li, Y.; Wang, J. Synthesis and characterization of hexapole[7]helicene, a circularly twisted chiral nanographene. J. Am. Chem. Soc. 2018, 140, 4222-4226.  doi: 10.1021/jacs.8b01447

    46. [46]

      Zhang, S.; Liu, X.; Li, C.; Li, L.; Song, J.; Shi, J.; Morton, M.; Rajca, S.; Rajca, A.; Wang, H. Thiophene-Based Double Helices: Syntheses, X-ray Structures, and Chiroptical Properties. J. Am. Chem. Soc. 2016, 138, 10002-10010.  doi: 10.1021/jacs.6b05709

    47. [47]

      Li, J. K.; Chen, X. Y.; Guo, Y. L.; Wang, X. C.; Sue, A. C. H.; Cao, X. Y.; Wang, X. Y. B, N-embedded double hetero[7]helicenes with strong chiroptical responses in the visible light region. J. Am. Chem. Soc. 2021, 143, 17958-17963.  doi: 10.1021/jacs.1c09058

    48. [48]

      Yang, Y.; Correa da Costa, R.; Smilgies, D. M.; Campbell, A. J.; Fuchter, M. J. Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small molecule dopant. Adv. Mater. 2013, 25, 2624-2628.  doi: 10.1002/adma.201204961

    49. [49]

      Wan, L.; Wade, J.; Salerno, F.; Arteaga, O.; Laidlaw, B.; Wang, X.; Penfold, T.; Fuchter, M. J.; Campbell, A. J. Inverting the handedness of circularly polarized luminescence from light-emitting polymers using film thickness. ACS Nano 2019, 13, 8099-8105.  doi: 10.1021/acsnano.9b02940

    50. [50]

      Wan, L.; Wade, J.; Shi, X.; Xu, S.; Fuchter, M. J.; Campbell, A. J. Highly efficient inverted circularly polarized organic light-emitting diodes. ACS Appl. Mater. Interfaces 2020, 12, 39471-39478.  doi: 10.1021/acsami.0c09139

    51. [51]

      Wan, L.; Wade, J.; Wang, X.; Campbell, A. J.; Fuchter, M. J. Engineering the sign of circularly polarized emission in achiral polymer-chiral small molecule blends as a function of blend ratio. J. Mater. Chem. C 2022, 10, 5168-5172.  doi: 10.1039/D1TC05403A

    52. [52]

      Li, M.; Wang, Y. F.; Zhang, D. W.; Zhang, D.; Hu, Z. Q.; Duan, L.; Chen, C, F. Thermally activated delayed fluorescence material-sensitized helicene enantiomer-based OLEDs: a new strategy for improving the efficiency of circularly polarized electroluminescence. Sci China Mater. 2021, 64, 899-908.  doi: 10.1007/s40843-020-1496-7

    53. [53]

      Dhbaibi, K.; Abella, L.; Meunier-Della-Gatta, S.; Roisnel, T.; Vanthuyne, N.; Jamoussi, B.; Pieters, G.; Racine, B.; Quesnel, E.; Autschbach, J.; Crassous, J.; Favereau, L. Achieving high circularly polarized luminescence with push-pull helicenic systems: from rationalized design to top-emission CP-OLED applications. Chem. Sci. 2021, 12, 5522-5533.  doi: 10.1039/D0SC06895K

    54. [54]

      Hellou, N.; Srebro-Hooper, M.; Favereau, L.; Zinna, F.; Caytan, E.; Toupet, L.; Dorcet, V.; Jean, M.; Vanthuyne, N.; Williams, J. A. G.; Bari, L. D.; Autschbach, J.; Crassous, J. Enantiopure cycloiridiated complexes bearing a pentahelicenic N-heterocyclic carbene and displaying long-lived circularly polarized phosphorescence. Angew. Chem. Int. Ed. 2017, 56, 8236-8239.  doi: 10.1002/anie.201704263

    55. [55]

      Brandt, J. R.; Wang, X.; Yang, Y.; Campbell, A. J.; Fuchter, M. J. Circularly polarized phosphorescent electroluminescence with a high dissymmetry factor from PHOLEDs based on a platinahelicene. J. Am. Chem. Soc. 2016, 138, 9743-9746.  doi: 10.1021/jacs.6b02463

    56. [56]

      Yan, Z. P.; Luo, X. F.; Liu, W. Q.; Wu, Z. G.; Laing, X.; Liao, K.; Wang, Y.; Zheng, Y. X.; Zhou, L.; Zuo, J. L.; Pan, Y.; Zhang, H. Configurationally stable platinahelicene enantiomers for efficient circularly polarized phosphorescent organic light-emitting diodes. Chem. Eur. J. 2019, 25, 5672-5676.  doi: 10.1002/chem.201900955

    57. [57]

      Yan, Z. P.; Luo, X. F.; Liao, K.; Zheng, Y. X.; Zuo, J. L. Rational design of the platinahelicene enantiomers for deep-red circularly polarized organic light-emitting diodes. Front. Chem. 2020, 8, 501.  doi: 10.3389/fchem.2020.00501

    58. [58]

      Yuan, L.; Liu, T. T.; Mao, M. X.; Luo, X. F.; Zheng, Y. X. Configurationally stable helical tetradentate Pt(Ⅱ) complexes for organic light-emitting diodes with circularly polarized electroluminescence. J. Mater. Chem. C 2021, 9, 14669-14674.  doi: 10.1039/D1TC03351D

    59. [59]

      Yuan, L.; Ding, Q. J.; Tu, Z. L.; Liao, X. J.; Luo, X. F.; Yan, Z. P.; Wu, Z. G.; Zheng, Y. X. Molecular self-induced configuration for improving dissymmetry factors in tetradentate platinum(Ⅱ) enantiomers cycloaddition. Chin. Chem. Lett. 2022, 33, 1459-1462.  doi: 10.1016/j.cclet.2021.08.104

    60. [60]

      Wu, X.; Huang, J. W.; Su, B. K.; Wang, S.; Yuan, L.; Zheng, W. Q.; Zhang, H.; Zheng, Y. X.; Zhu, W.; Chou, P. T. Fabrication of circularly polarized MR-TADF emitters with asymmetrical peripheral-lock enhancing helical B/N-doped nanographenes. Adv. Mater. 2022, 34, 2105080.  doi: 10.1002/adma.202105080

    61. [61]

      Yang, W.; Li, N.; Miao, J.; Zhan, L.; Gong, S.; Huang, Z.; Yang, C. Simple double hetero[5]helicenes realize highly efficient and narrowband circularly polarized organic light-emitting diodes. CCS Chem. 2022, 4, 3463-3471.  doi: 10.31635/ccschem.022.202101661

    62. [62]

      Yang, S. Y.; Zou, S. N.; Kong, F. C.; Liao, X. J.; Qu, Y. K.; Feng, Z. Q.; Zheng, Y. X.; Jiang, Z. Q.; Liao, L. S. A narrowband blue circularly polarized thermally activated delayed fluorescence emitter with a heterohelicene structure. Chem. Commun. 2021, 57, 11041-11044.  doi: 10.1039/D1CC04405B

    63. [63]

      Yang, S. Y.; Tian, Q. S.; Liao, X. J.; Wu, Z. G.; Shen, W. S.; Yu, Y. J.; Feng, Z. Q.; Zheng, Y. X.; Jiang, Z. Q.; Liao, L. S. Efficient circularly polarized thermally activated delayed fluorescence hetero-[4]helicene with carbonyl-/sulfone-bridged triarylamine structures. J. Mater. Chem. C 2022, 10, 4393-4401.  doi: 10.1039/D1TC06125A

    64. [64]

      Lu, G.; Wu, Z. G.; Wu, R.; Cao, X.; Zhou, L.; Zheng, Y. X.; Yang, C. Semitransparent circularly polarized phosphorescent organic light-emitting diodes with external quantum efficiency over 30% and dissymmetry factor close to 10-2. Adv. Funct. Mater. 2021, 31, 2102898.  doi: 10.1002/adfm.202102898

  • 加载中
    1. [1]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    2. [2]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    5. [5]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    6. [6]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    7. [7]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    8. [8]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    9. [9]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    10. [10]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    11. [11]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    12. [12]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    13. [13]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    14. [14]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    15. [15]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    16. [16]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    17. [17]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    18. [18]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    19. [19]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    20. [20]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

Metrics
  • PDF Downloads(29)
  • Abstract views(966)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return