-
[1]
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.
doi: 10.1038/nature11475
-
[2]
VijayaVenkataRaman, S.; Iniyan, S.; Goic, R. A review of climate change, mitigation and adaptation. Renew. Sustain. Energy Rev. 2012, 16, 878-897.
doi: 10.1016/j.rser.2011.09.009
-
[3]
Zhang, Y.; Pan, W.; Wang, H.; Shen, Z.; Wu, Y.; Dong, J.; Mao, X. Misalignment-tolerant dual-transmitter electric vehicle wireless charging system with reconfigurable topologies. IEEE Trans. Power Electron. 2022, 37, 8816-8819.
doi: 10.1109/TPEL.2022.3160868
-
[4]
Su, D. S.; Zhang, B.; Schlögl, R. Electron microscopy of solid catalysts—transforming from a challenge to a toolbox. Chem. Rev. 2015, 115, 2818-2882.
doi: 10.1021/cr500084c
-
[5]
Wu, J.; Shan, H.; Chen, W.; Gu, X.; Tao, P.; Song, C.; Shang, W.; Deng, T. In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv. Mater. 2016, 28, 9686-9712.
doi: 10.1002/adma.201602519
-
[6]
Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.
doi: 10.1021/acs.chemrev.7b00776
-
[7]
Han, L.; Cheng, H.; Liu, W.; Li, H.; Ou, P.; Lin, R.; Wang, H. T.; Pao, C. -W.; Head, A. R.; Wang, C. H.; Tong, X.; Sun, C. J.; Pong, W. F.; Luo, J.; Zheng, J. C.; Xin, H. L. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 2022, 21, 681-688.
doi: 10.1038/s41563-022-01252-y
-
[8]
Williams, D. B.; Carter, C. B. The transmission electron microscope. Transm. Electron Microsc. 1996, 3-17.
-
[9]
Kim, M. J.; McNally, B.; Murata, K.; Meller, A. Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 2007, 18, 205302.
doi: 10.1088/0957-4484/18/20/205302
-
[10]
Jonge, N.; Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 2011, 6, 695-704.
doi: 10.1038/nnano.2011.161
-
[11]
Xu, J.; He, J.; Ding, Y.; Luo, J. X-ray imaging of atomic nuclei. Sci. China Mater. 2020, 63, 1788-1796.
doi: 10.1007/s40843-020-1320-1
-
[12]
Morishita, S.; Ishikawa, R.; Kohno, Y.; Sawada, H.; Shibata, N.; Ikuhara, Y. Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector. Microscopy 2018, 67, 46-50.
doi: 10.1093/jmicro/dfx122
-
[13]
Jiang, Y.; Chen, Z.; Han, Y.; Deb, P.; Gao, H.; Xie, S.; Purohit, P.; Tate, M. W.; Park, J.; Gruner, S. M.; Elser, V.; Muller, D. A. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 2018, 559, 343-349.
doi: 10.1038/s41586-018-0298-5
-
[14]
Krivanek, O. L.; Dellby, N.; Hachtel, J. A.; Idrobo, J. -C.; Hotz, M. T.; Plotkin-Swing, B.; Bacon, N. J.; Bleloch, A. L.; Corbin, G. J.; Hoffman, M. V.; Meyer, C. E.; Lovejoy, T. C. Progress in ultrahigh energy resolution EELS. Ultramicroscopy 2019, 203, 60-67.
doi: 10.1016/j.ultramic.2018.12.006
-
[15]
Ramachandramoorthy, R.; Bernal, R.; Espinosa, H. D. Pushing the envelope of in situ transmission electron microscopy. ACS Nano 2015, 9, 4675-4685.
doi: 10.1021/acsnano.5b01391
-
[16]
Zheng, H.; Meng, Y. S.; Zhu, Y. Frontiers of in situ electron microscopy. Mrs Bull. 2015, 40, 12-18.
doi: 10.1557/mrs.2014.305
-
[17]
van der Wal, L. I.; Turner, S. J.; Zečević, J. Developments and advances in in situ transmission electron microscopy for catalysis research. Catal. Sci. Technol. 2021, 11, 3634-3658.
doi: 10.1039/D1CY00258A
-
[18]
He, B.; Zhang, Y.; Liu, X.; Chen, L. In-situ transmission electron microscope techniques for heterogeneous catalysis. ChemCatChem 2020, 12, 1853-1872.
doi: 10.1002/cctc.201902285
-
[19]
Zheng, H.; Lu, X.; He, K. In situ transmission electron microscopy and artificial intelligence enabled data analytics for energy materials. J. Energy Chem. 2022, 68, 454-493.
doi: 10.1016/j.jechem.2021.12.001
-
[20]
Sudheeshkumar, V.; Soong, C.; Dogel, S.; Scott, R. W. J. Probing the thermal stability of (3-mercaptopropyl)-trimethoxysilane-protected Au25 clusters by in situ transmission electron microscopy. Small 2021, 17, 2004539.
doi: 10.1002/smll.202004539
-
[21]
Taheri, M. L.; Stach, E. A.; Arslan, I.; Crozier, P. A.; Kabius, B. C.; LaGrange, T.; Minor, A. M.; Takeda, S.; Tanase, M.; Wagner, J. B.; Sharma, R. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 2016, 170, 86-95.
doi: 10.1016/j.ultramic.2016.08.007
-
[22]
Yuan, W.; Zhu, B.; Li, X. Y.; Hansen, T. W.; Ou, Y.; Fang, K.; Yang, H.; Zhang, Z.; Wagner, J. B.; Gao, Y.; Wang, Y. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 2020, 367, 428-430.
doi: 10.1126/science.aay2474
-
[23]
Lyu, Y.; Wang, P.; Liu, D.; Zhang, F.; Senftle, T. P.; Zhang, G.; Zhang, Z.; Wang, J.; Liu, W. Tracing the active phase and dynamics for carbon nanofiber growth on nickel catalyst using environmental transmission electron microscopy. Small Methods 2022, 6, 2200235.
doi: 10.1002/smtd.202200235
-
[24]
Yu, S.; Jiang, Y.; Sun, Y.; Gao, F.; Zou, W.; Liao, H.; Dong, L. Real time imaging of photocatalytic active site formation during H2 evolution by in-situ TEM. Appl. Catal. B Environ. 2021, 284, 119743.
doi: 10.1016/j.apcatb.2020.119743
-
[25]
Espinosa, H. D.; Bernal, R. A.; Filleter, T. In situ TEM electromechanical testing of nanowires and nanotubes. Small 2012, 8, 3233-3252.
doi: 10.1002/smll.201200342
-
[26]
Park, J.; Koo, K.; Noh, N.; Chang, J. H.; Cheong, J. Y.; Dae, K. S.; Park, J. S.; Ji, S.; Kim, I. -D.; Yuk, J. M. Graphene liquid cell electron microscopy: progress, applications, and perspectives. ACS Nano 2021, 15, 288-308.
doi: 10.1021/acsnano.0c10229
-
[27]
Martin, D. C.; Thomas, E. L. Experimental high-resolution electron microscopy of polymers. Polymer 1995, 36, 1743-1759.
doi: 10.1016/0032-3861(95)90922-O
-
[28]
Midgley, P. A.; Weyland, M. 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 2003, 96, 413-431.
doi: 10.1016/S0304-3991(03)00105-0
-
[29]
Weyland, M.; Midgley, P. A. Electron tomography. Mater. Today 2004, 7, 32-40.
-
[30]
Miao, J.; Ercius, P.; Billinge, S. J. L. Atomic electron tomography: 3D structures without crystals. Science 2016, 353, aaf2157.
doi: 10.1126/science.aaf2157
-
[31]
Scott, M. C.; Chen, C. C.; Mecklenburg, M.; Zhu, C.; Xu, R.; Ercius, P.; Dahmen, U.; Regan, B. C.; Miao, J. Electron tomography at 2.4-ångström resolution. Nature 2012, 483, 444-447.
doi: 10.1038/nature10934
-
[32]
McIntosh, R.; Nicastro, D.; Mastronarde, D. New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol. 2005, 15, 43-51.
doi: 10.1016/j.tcb.2004.11.009
-
[33]
Xia, W.; Yang, Y.; Meng, Q.; Deng, Z.; Gong, M.; Wang, J.; Wang, D.; Zhu, Y.; Sun, L.; Xu, F.; Li, J.; Xin, H. L. Bimetallic nanoparticle oxidation in three dimensions by chemically sensitive electron tomography and in situ transmission electron microscopy. ACS Nano 2018, 12, 7866-7874.
doi: 10.1021/acsnano.8b02170
-
[34]
Han, L.; Meng, Q.; Wang, D.; Zhu, Y.; Wang, J.; Du, X.; Stach, E. A.; Xin, H. L. Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale. Nat. Commun. 2016, 7, 13335.
doi: 10.1038/ncomms13335
-
[35]
Park, J.; Elmlund, H.; Ercius, P.; Yuk, J. M.; Limmer, D. T.; Chen, Q.; Kim, K.; Han, S. H.; Weitz, D. A.; Zettl, A.; Alivisatos, A. P. 3D structure of individual nanocrystals in solution by electron microscopy. Science 2015, 349, 290-295.
doi: 10.1126/science.aab1343
-
[36]
Fu, X.; Chen, B.; Tang, J.; Hassan, M. Th.; Zewail, A. H. Imaging rotational dynamics of nanoparticles in liquid by 4D electron microscopy. Science 2017, 355, 494-498.
doi: 10.1126/science.aah3582
-
[37]
Chen, Q.; Smith, J. M.; Park, J.; Kim, K.; Ho, D.; Rasool, H. I.; Zettl, A.; Alivisatos, A. P. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett. 2013, 13, 4556-4561.
doi: 10.1021/nl402694n
-
[38]
Wang, Z.; Ke, X.; Sui, M. Recent progress on revealing 3D structure of electrocatalysts using advanced 3D electron tomography: a mini review. Front. Chem. 2022, 10, 872117.
doi: 10.3389/fchem.2022.872117
-
[39]
Arslan, I.; Tong, J. R.; Midgley, P. A. Reducing the missing wedge: high-resolution dual axis tomography of inorganic materials. Proc. Int. Workshop Enhanc. Data Gener. Electrons 2006, 106, 994-1000.
-
[40]
Kawase, N.; Kato, M.; Nishioka, H.; Jinnai, H. Transmission electron microtomography without the "missing wedge" for quantitative structural analysis. Ultramicroscopy 2007, 107, 8-15.
doi: 10.1016/j.ultramic.2006.04.007
-
[41]
Radermacher, M. Weighted back-projection methods. Electron Tomogr. 2007, 245-273.
-
[42]
Man, B. D.; Basu, S. Distance-driven projection and backprojection in three dimensions. Phys. Med. Biol. 2004, 49, 2463-2475.
doi: 10.1088/0031-9155/49/11/024
-
[43]
Wan, X.; Zhang, F.; Chu, Q.; Zhang, K.; Sun, F.; Yuan, B.; Liu, Z. Three-dimensional reconstruction using an adaptive simultaneous algebraic reconstruction technique in electron tomography. J. Struct. Biol. 2011, 175, 277-287.
doi: 10.1016/j.jsb.2011.06.002
-
[44]
Jiang, M.; Wang, G. Convergence of the simultaneous algebraic reconstruction technique (SART). IEEE Trans. Image Process. 2003, 12, 957-961.
doi: 10.1109/TIP.2003.815295
-
[45]
Chen, B.; Bian, Z.; Zhou, X.; Chen, W.; Ma, J.; Liang, Z. A new Mumford-Shah total variation minimization based model for sparse-view X-ray computed tomography image reconstruction. Neurocomputing 2018, 285, 74-81.
doi: 10.1016/j.neucom.2018.01.037
-
[46]
Wei, W.; Zhou, B.; Połap, D.; Woźniak, M. A regional adaptive variational PDE model for computed tomography image reconstruction. Pattern Recognit. 2019, 92, 64-81.
doi: 10.1016/j.patcog.2019.03.009
-
[47]
Hagita, K.; Higuchi, T.; Jinnai, H. Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning. Sci. Rep. 2018, 8, 1-8.
-
[48]
Wang, H.; Rivenson, Y.; Jin, Y.; Wei, Z.; Gao, R.; Günaydın, H.; Bentolila, L. A.; Kural, C.; Ozcan, A. Deep learning enables crossmodality super-resolution in fluorescence microscopy. Nat. Methods 2019, 16, 103-110.
doi: 10.1038/s41592-018-0239-0
-
[49]
Nehme, E.; Weiss, L. E.; Michaeli, T.; Shechtman, Y. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 2018, 5, 458-464.
doi: 10.1364/OPTICA.5.000458
-
[50]
Ding, G.; Liu, Y.; Zhang, R.; Xin, H. L. A joint deep learning model to recover information and reduce artifacts in missing-wedge sinograms for electron tomography and beyond. Sci. Rep. 2019, 9, 12803.
doi: 10.1038/s41598-019-49267-x
-
[51]
Wang, C.; Ding, G.; Liu, Y.; Xin, H. L. 0.7 Å resolution electron tomography enabled by deep-learning-aided information recovery. Adv. Intell. Syst. 2020, 2, 2000152.
doi: 10.1002/aisy.202000152
-
[52]
Lee, J.; Jeong, C.; Yang, Y. Single-atom level determination of 3-dimensional surface atomic structure via neural network-assisted atomic electron tomography. Nat. Commun. 2021, 12, 1962.
-
[53]
Lee, J.; Jeong, C.; Lee, T.; Ryu, S.; Yang, Y. Direct observation of three-dimensional atomic structure of twinned metallic nanoparticles and their catalytic properties. Nano Lett. 2022, 22, 665-672.
doi: 10.1021/acs.nanolett.1c03773
-
[54]
Gontard, L. C.; Dunin-Borkowski, R. E.; Fernández, A.; Ozkaya, D.; Kasama, T. Tomographic heating holder for in situ TEM: study of Pt/C and PtPd/Al2O3 catalysts as a function of temperature. Microsc. Microanal. 2014, 20, 982-990.
-
[55]
Wu, F.; Yao, N. Advances in windowed gas cells for in-situ TEM studies. Nano Energy 2015, 13, 735-756.
-
[56]
Kamino, T.; Yaguchi, T.; Konno, M.; Watabe, A.; Marukawa, T.; Mima, T.; Kuroda, K.; Saka, H.; Arai, S.; Makino, H.; Suzuki, Y.; Kishita, K. Development of a gas injection/specimen heating holder for use with transmission electron microscope. J. Electron Microsc. (Tokyo) 2005, 54, 497-503.
-
[57]
Mehraeen, S.; McKeown, J. T.; Deshmukh, P. V.; Evans, J. E.; Abellan, P.; Xu, P.; Reed, B. W.; Taheri, M. L.; Fischione, P. E.; Browning, N. D. A (S)TEM gas cell holder with localized laser heating for in situ experiments. Microsc. Microanal. 2013, 19, 470-478.
-
[58]
Cavalca, F.; Laursen, A. B.; Kardynal, B. E.; Dunin-Borkowski, R. E.; Dahl, S.; Wagner, J. B.; Hansen, T. W. In situ transmission electron microscopy of light-induced photocatalytic reactions. Nanotechnology 2012, 23, 075705.
-
[59]
Liu, Z.; Che, R.; Elzatahry, A. A.; Zhao, D. Direct imaging Au nanoparticle migration inside mesoporous silica channels. ACS Nano 2014, 8, 10455-10460.
-
[60]
Asoro, M. A.; Ferreira, P. J.; Kovar, D. In situ transmission electron microscopy and scanning transmission electron microscopy studies of sintering of Ag and Pt nanoparticles. Acta Mater. 2014, 81, 173-183.
-
[61]
Hobbs, C.; Jaskaniec, S.; McCarthy, E. K.; Downing, C.; Opelt, K.; Güth, K.; Shmeliov, A.; Mourad, M. C. D.; Mandel, K.; Nicolosi, V. Structural transformation of layered double hydroxides: an in situ TEM analysis. Npj 2D Mater. Appl. 2018, 2, 1-10.
-
[62]
Xiong, Y.; Yang, Y.; Joress, H.; Padgett, E.; Gupta, U.; Yarlagadda, V.; Agyeman-Budu, D. N.; Huang, X.; Moylan, T. E.; Zeng, R.; Kongkanand, A.; Escobedo, F. A.; Brock, J. D.; DiSalvo, F. J.; Muller, D. A.; Abruña, H. D. Revealing the atomic ordering of binary intermetallics using in situ heating techniques at multilength scales. Proc. Natl. Acad. Sci. 2019, 116, 1974-1983.
-
[63]
Cao, P.; Tang, P.; Bekheet, M. F.; Du, H.; Yang, L.; Haug, L.; Gili, A.; Bischoff, B.; Gurlo, A.; Kunz, M.; Dunin-Borkowski, R. E.; Penner, S.; Heggen, M. Atomic-scale insights into nickel exsolution on LaNiO3 catalysts via in situ electron microscopy. J. Phys. Chem. C 2022, 126, 786-796.
-
[64]
Xin, H. L.; Niu, K.; Alsem, D. H.; Zheng, H. In situ TEM study of catalytic nanoparticle reactions in atmospheric pressure gas environment. Microsc. Microanal. 2013, 19, 1558-1568.
-
[65]
Xin, H. L.; Alayoglu, S.; Tao, R.; Genc, A.; Wang, C. M.; Kovarik, L.; Stach, E. A.; Wang, L. W.; Salmeron, M.; Somorjai, G. A.; Zheng, H. Revealing the atomic restructuring of Pt-Co nanoparticles. Nano Lett. 2014, 14, 3203-3207.
-
[66]
Kamatani, K.; Higuchi, K.; Yamamoto, Y.; Arai, S.; Tanaka, N.; Ogura, M. Direct observation of catalytic oxidation of particulate matter using in situ TEM. Sci. Rep. 2015, 5, 10161.
-
[67]
Zhang, X.; Meng, J.; Zhu, B.; Yu, J.; Zou, S.; Zhang, Z.; Gao, Y.; Wang, Y. In situ TEM studies of the shape evolution of Pd nanocrystals under oxygen and hydrogen environments at atmospheric pressure. Chem. Commun. 2017, 53, 13213-13216.
-
[68]
Niu, Y.; Liu, X.; Wang, Y.; Zhou, S.; Lv, Z.; Zhang, L.; Shi, W.; Li, Y.; Zhang, W.; Su, D. S.; Zhang, B. Visualizing formation of intermetallic PdZn in a palladium/zinc oxide catalyst: interfacial fertilization by PdHx. Angew. Chem. Int. Ed. 2019, 58, 4232-4237.
-
[69]
Fan, H.; Qiu, L.; Fedorov, A.; Willinger, M. -G.; Ding, F.; Huang, X. Dynamic state and active structure of Ni-Co catalyst in carbon nanofiber growth revealed by in situ transmission electron microscopy. ACS Nano 2021, 15, 17895-17906.
-
[70]
Sun, H.; Liu, Q.; Gao, Z.; Geng, L.; Li, Y.; Zhang, F.; Yan, J.; Gao, Y.; Suenaga, K.; Zhang, L.; Tang, Y.; Huang, J. In situ TEM visualization of single atom catalysis in solid-state Na-O2 nanobatteries. J. Mater. Chem. A 2022, 10, 6096-6106.
-
[71]
Fujita, T.; Guan, P.; McKenna, K.; Lang, X.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N.; Ishikawa, Y.; Asao, N.; Yamamoto, Y.; Erlebacher, J.; Chen, M. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 2012, 11, 775-780.
-
[72]
Liao, H. G.; Shao, Y.; Wang, C.; Lin, Y.; Jiang, Y. X.; Sun, S. G. TEM study of fivefold twined gold nanocrystal formation mechanism. Mater. Lett. 2014, 116, 299-303.
-
[73]
Yang, J.; Choi, M. K.; Sheng, Y.; Jung, J.; Bustillo, K.; Chen, T.; Lee, S. W.; Ercius, P.; Kim, J. H.; Warner, J. H.; Chan, E. M.; Zheng, H. MoS2 liquid cell electron microscopy through clean and fast polymer-free MoS2 transfer. Nano Lett. 2019, 19, 1788-1795.
-
[74]
Liao, H. G.; Zherebetskyy, D.; Xin, H.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L. W.; Zheng, H. Facet development during platinum nanocube growth. Science 2014, 345, 916-919.
-
[75]
Wei, W.; Zhang, H.; Wang, W.; Dong, M.; Nie, M.; Sun, L.; Xu, F. Observing the growth of Pb3O4 nanocrystals by in situ liquid cell transmission electron microscopy. ACS Appl. Mater. Interfaces 2019, 11, 24478-24484.
-
[76]
Zhu, G. Z.; Prabhudev, S.; Yang, J.; Gabardo, C. M.; Botton, G. A.; Soleymani, L. In situ liquid cell TEM study of morphological evolution and degradation of Pt-Fe nanocatalysts during potential cycling. J. Phys. Chem. C 2014, 118, 22111-22119.
-
[77]
Beermann, V.; Holtz, M. E.; Padgett, E.; Araujo, J. F. de; Muller, D. A.; Strasser, P. Real-time imaging of activation and degradation of carbon supported octahedral Pt-Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM. Energy Environ. Sci. 2019, 12, 2476-2485.
-
[78]
Vavra, J.; Shen, T. H.; Stoian, D.; Tileli, V.; Buonsanti, R. Real-time monitoring reveals dissolution/redeposition mechanism in copper nanocatalysts during the initial stages of the CO2 reduction reaction. Angew. Chem. 2021, 133, 1367-1374.
-
[79]
Lu, Y.; Yin, W. J.; Peng, K. L.; Wang, K.; Hu, Q.; Selloni, A.; Chen, F. R.; Liu, L. M.; Sui, M. L. Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. Nat. Commun. 2018, 9, 1-9.
-
[80]
Campbell, C. T.; Ertl, G.; Kuipers, H.; Segner, J. A molecular beam study of the catalytic oxidation of CO on a Pt (111) surface. J. Chem. Phys. 1980, 73, 5862-5873.
-
[81]
Ciuparu, D.; Lyubovsky, M. R.; Altman, E.; Pfefferle, L. D.; Datye, A. Catalytic combustion of methane over palladium-based catalysts. Catal. Rev. 2002, 44, 593-649.
-
[82]
Zaera, F. The surface chemistry of hydrocarbon partial oxidation catalysis. Catal. Today 2003, 81, 149-157.
-
[83]
Kamino, T.; Saka, H. A newly developed high resolution hot stage and its application to materials characterization. Microsc. Microanal. Microstruct. 1993, 4, 127-135.
-
[84]
Canavan, M.; Daly, D.; Rummel, A.; McCarthy, E. K.; McAuley, C.; Nicolosi, V. Novel in-situ lamella fabrication technique for in-situ TEM. Ultramicroscopy 2018, 190, 21-29.
-
[85]
Hansen, T. W.; DeLaRiva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc. Chem. Res. 2013, 46, 1720-1730.
-
[86]
Yoshida, K.; Bright, A.; Tanaka, N. Direct observation of the initial process of Ostwald ripening using spherical aberration-corrected transmission electron microscopy. J. Electron Microsc. (Tokyo) 2012, 61, 99-103.
-
[87]
Yoshida, K.; Xudong, Z.; Bright, A. N.; Saitoh, K.; Tanaka, N. Dynamic environmental transmission electron microscopy observation of platinum electrode catalyst deactivation in a proton-exchange-membrane fuel cell. Nanotechnology 2013, 24, 065705.
-
[88]
Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; Paul J King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.
-
[89]
Asoro, M. A.; Ferreira, P. J.; Kovar, D. In situ transmission electron microscopy and scanning transmission electron microscopy studies of sintering of Ag and Pt nanoparticles. Acta Mater. 2014, 81, 173-183.
-
[90]
Yokosawa, T.; Alan, T.; Pandraud, G.; Dam, B.; Zandbergen, H. In-situ TEM on (de)hydrogenation of Pd at 0.5-4.5 bar hydrogen pressure and 20-400℃. Ultramicroscopy 2012, 112, 47-52.
-
[91]
Jinschek, J. R.; Helveg, S. Image resolution and sensitivity in an environmental transmission electron microscope. Micron 2012, 43, 1156-1168.
-
[92]
Creemer, J. F.; Helveg, S.; Hoveling, G. H.; Ullmann, S.; Molenbroek, A. M.; Sarro, P. M.; Zandbergen, H. W. Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 2008, 108, 993-998.
-
[93]
Allard, L. F.; Overbury, S. H.; Bigelow, W. C.; Katz, M. B.; Nackashi, D. P.; Damiano, J. Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies. Microsc. Microanal. 2012, 18, 656-666.
-
[94]
Mele, L.; Konings, S.; Dona, P.; Evertz, F.; Mitterbauer, C.; Faber, P.; Schampers, R.; Jinschek, J. R. A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes. Microsc. Res. Tech. 2016, 79, 239-250.
-
[95]
Wang, W.; Dahl, M.; Yin, Y. Hollow nanocrystals through the nanoscale Kirkendall effect. Chem. Mater. 2013, 25, 1179-1189.
-
[96]
Li, S.; Gong, J. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions. Chem. Soc. Rev. 2014, 43, 7245-7256.
-
[97]
Akri, M.; Zhao, S.; Li, X.; Zang, K.; Lee, A. F.; Isaacs, M. A.; Xi, W.; Gangarajula, Y.; Luo, J.; Ren, Y.; Cui, Y. T.; Li, L.; Su, Y.; Pan, X.; Wen, W.; Pan, Y.; Wilson, K.; Li, L.; Qiao, B.; Ishii, H.; Liao, Y. F.; Wang, A.; Wang, X.; Zhang, T. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 2019, 10, 1-10.
-
[98]
Wang, Y.; Qiu, L.; Zhang, L.; Tang, D. M.; Ma, R.; Wang, Y.; Zhang, B.; Ding, F.; Liu, C.; Cheng, H. M. Precise identification of the active phase of cobalt catalyst for carbon nanotube growth by in situ transmission electron microscopy. ACS Nano 2020, 14, 16823-16831.
doi: 10.1021/acsnano.0c05542
-
[99]
Grogan, J. M.; Schneider, N. M.; Ross, F. M.; Bau, H. H. Bubble and pattern formation in liquid induced by an electron beam. Nano Lett. 2014, 14, 359-364.
doi: 10.1021/nl404169a
-
[100]
Yoshida, K.; Yamasaki, J.; Tanaka, N. In situ high-resolution transmission electron microscopy observation of photodecomposition process of poly-hydrocarbons on catalytic TiO2 films. Appl. Phys. Lett. 2004, 84, 2542-2544.
doi: 10.1063/1.1689747
-
[101]
Zheng, H.; Lu, X.; He, K. In situ transmission electron microscopy and artificial intelligence enabled data analytics for energy materials. J. Energy Chem. 2022, 68, 454-493.
doi: 10.1016/j.jechem.2021.12.001
-
[102]
Zeng, Z.; Liang, W. I.; Liao, H. G.; Xin, H. L.; Chu, Y. H.; Zheng, H. Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 2014, 14, 1745-1750.
doi: 10.1021/nl403922u
-
[103]
Park, J. H.; Schneider, N. M.; Grogan, J. M.; Reuter, M. C.; Bau, H. H.; Kodambaka, S.; Ross, F. M. Control of electron beam-induced Au nanocrystal growth kinetics through solution chemistry. Nano Lett. 2015, 15, 5314-5320.
doi: 10.1021/acs.nanolett.5b01677
-
[104]
Wang, F.; Richards, V. N.; Shields, S. P.; Buhro, W. E. Kinetics and mechanisms of aggregative nanocrystal growth. Chem. Mater. 2014, 26, 5-21.
doi: 10.1021/cm402139r
-
[105]
Zheng, H.; Smith, R. K.; Jun, Y.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309-1312.
doi: 10.1126/science.1172104
-
[106]
Liao, H. G.; Cui, L.; Whitelam, S.; Zheng, H. Real-time imaging of Pt3Fe nanorod growth in solution. Science 2012, 336, 1011-1014.
doi: 10.1126/science.1219185
-
[107]
Zhang, H.; Nai, J.; Yu, L.; Lou, X. W. Metal-organic-frameworkbased materials as platforms for renewable energy and environmental applications. Joule 2017, 1, 77-107.
doi: 10.1016/j.joule.2017.08.008
-
[108]
Kuang, P.; Sayed, M.; Fan, J.; Cheng, B.; Yu, J. 3D graphenebased H2-production photocatalyst and electrocatalyst. Adv. Energy Mater. 2020, 10, 1903802.
doi: 10.1002/aenm.201903802
-
[109]
Yuan, Y. J.; Chen, D.; Yu, Z. T.; Zou, Z. G. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. J. Mater. Chem. A 2018, 6, 11606-11630.
doi: 10.1039/C8TA00671G
-
[110]
Chen, R.; Pang, S.; An, H.; Zhu, J.; Ye, S.; Gao, Y.; Fan, F.; Li, C. Charge separation via asymmetric illumination in photocatalytic Cu2O particles. Nat. Energy 2018, 3, 655-663.
doi: 10.1038/s41560-018-0194-0
-
[111]
Wang, C.; Du, K.; Song, K.; Ye, X.; Qi, L.; He, S.; Tang, D.; Lu, N.; Jin, H.; Li, F.; Ye, H. Size-dependent grain-boundary structure with improved conductive and mechanical stabilities in sub-10-nm gold crystals. Phys. Rev. Lett. 2018, 120, 186102
doi: 10.1103/PhysRevLett.120.186102
-
[112]
Midgley, P. A.; Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nat. Mater. 2009, 8, 271-280.
doi: 10.1038/nmat2406
-
[113]
Midgley, P. A.; Weyland, M.; Yates, T. J. V.; Arslan, I.; Dunin-Borkowski, R. E.; Thomas, J. M. Nanoscale scanning transmission electron tomography. J. Microsc. 2006, 223, 185-190.
doi: 10.1111/j.1365-2818.2006.01616.x
-
[114]
Saghi, Z.; Midgley, P. A. Electron tomography in the (S)TEM: from nanoscale morphological analysis to 3D atomic imaging. Annu. Rev. Mater. Res. 2012, 42, 59-79.
doi: 10.1146/annurev-matsci-070511-155019
-
[115]
Zhou, J.; Yang, Y.; Yang, Y.; Kim, D. S.; Yuan, A.; Tian, X.; Ophus, C.; Sun, F.; Schmid, A. K.; Nathanson, M.; Heinz, H.; An, Q.; Zeng, H.; Ercius, P.; Miao, J. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 2019, 570, 500-503.
doi: 10.1038/s41586-019-1317-x
-
[116]
Bals, S.; Goris, B.; Liz-Marzán, L. M.; Van Tendeloo, G. Three-dimensional characterization of noble-metal nanoparticles and their assemblies by electron tomography. Angew. Chem. Int. Ed. 2014, 53, 10600-10610.
doi: 10.1002/anie.201401059
-
[117]
Liu, P.; Irmak, E. A.; Backer, A. D.; Wael, A. D.; Lobato, I.; Béché, A.; Aert, S. V.; Bals, S. Three-dimensional atomic structure of supported Au nanoparticles at high temperature. Nanoscale 2021, 13, 1770-1776.
doi: 10.1039/D0NR08664A
-
[118]
Albrecht, W.; Bladt, E.; Vanrompay, H.; Smith, J. D.; Skrabalak, S. E.; Bals, S. Thermal stability of gold/palladium octopods studied in situ in 3D: understanding design rules for thermally stable metal nanoparticles. ACS Nano 2019, 13, 6522-6530.
doi: 10.1021/acsnano.9b00108
-
[119]
Vanrompay, H.; Bladt, E.; Albrecht, W.; Béché, A.; Zakhozheva, M.; Sánchez-Iglesias, A.; Liz-Marzán, L. M.; Bals, S. 3D characterization of heat-induced morphological changes of Au nanostars by fast in situ electron tomography. Nanoscale 2018, 10, 22792-22801.
doi: 10.1039/C8NR08376B
-
[120]
Vanrompay, H.; Buurlage, J. W.; Pelt, D. M.; Kumar, V.; Zhuo, X.; Liz-Marzán, L. M.; Bals, S.; Batenburg, K. J. Real-time reconstruction of arbitrary slices for quantitative and in situ 3D characterization of nanoparticles. Part. Part. Syst. Charact. 2020, 37, 2000073.
doi: 10.1002/ppsc.202000073
-
[121]
Wang, Z.; Ke, X.; Zhou, K.; Xu, X.; Jin, Y.; Wang, H.; Sui, M. Engineering the structure of ZIF-derived catalysts by revealing the critical role of temperature for enhanced oxygen reduction reaction. J. Mater. Chem. A 2021, 9, 18515-18525.
doi: 10.1039/D1TA03036A
-
[122]
Song, M.; Du, K.; Wang, C.; Wen, S.; Huang, H.; Nie, Z.; Ye, H. Geometric and chemical composition effects on healing kinetics of voids in Mg-bearing Al alloys. Metall. Mater. Trans. A 2016, 47, 2410-2420.
doi: 10.1007/s11661-016-3380-3
-
[123]
Roiban, L.; Li, S.; Aouine, M.; Tuel, A.; Farrusseng, D.; Epicier, T. Fast 'Operando' electron nanotomography. J. Microsc. 2018, 269, 117-126.
doi: 10.1111/jmi.12557
-
[124]
Koneti, S.; Roiban, L.; Dalmas, F.; Langlois, C.; Gay, A. S.; Cabiac, A.; Grenier, T.; Banjak, H.; Maxim, V.; Epicier, T. Fast electron tomography: applications to beam sensitive samples and in situ TEM or operando environmental TEM studies. Mater. Charact. 2019, 151, 480-495.
doi: 10.1016/j.matchar.2019.02.009
-
[125]
Tan, S. F.; Lin, G.; Bosman, M.; Mirsaidov, U.; Nijhuis, C. A. Realtime dynamics of galvanic replacement reactions of silver nanocubes and Au studied by liquid-cell transmission electron microscopy. ACS Nano 2016, 10, 7689-7695.
doi: 10.1021/acsnano.6b03020
-
[126]
Goris, B.; Polavarapu, L.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L. M. Monitoring galvanic replacement through three-dimensional morphological and chemical mapping. Nano Lett. 2014, 14, 3220-3226.
doi: 10.1021/nl500593j
-
[127]
Kwon, O. -H.; Zewail, A. H. 4D electron tomography. Science 2010, 328, 1668-1673.
doi: 10.1126/science.1190470
-
[128]
Hata, S.; Miyazaki, S.; Gondo, T.; Kawamoto, K.; Horii, N.; Sato, K.; Furukawa, H.; Kudo, H.; Miyazaki, H.; Murayama, M. In-situ straining and time-resolved electron tomography data acquisition in a transmission electron microscope. Microscopy 2017, 66, 143-153.
-
[129]
Hata, S.; Honda, T.; Saito, H.; Mitsuhara, M.; Petersen, T. C.; Murayama, M. Electron tomography: an imaging method for materials deformation dynamics. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100850.
doi: 10.1016/j.cossms.2020.100850
-
[130]
Hata, S.; Furukawa, H.; Gondo, T.; Hirakami, D.; Horii, N.; Ikeda, K. I.; Kawamoto, K.; Kimura, K.; Matsumura, S.; Mitsuhara, M.; Miyazaki, H.; Miyazaki, S.; Murayama, M. M.; Nakashima, H.; Saito, H.; Sakamoto, M.; Yamasaki, S. Electron tomography imaging methods with diffraction contrast for materials research. Microscopy 2020, 69, 141-155.
doi: 10.1093/jmicro/dfaa002
-
[131]
Wang, Y. G.; Mei, D.; Glezakou, V. A.; Li, J.; Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 2015, 6, 1-8.
-
[132]
Stukowski, A. Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 2012, 20, 045021.
doi: 10.1088/0965-0393/20/4/045021
-
[133]
Liu, P.; Madsen, J.; Schiøtz, J.; Wagner, J. B.; Hansen, T. W. Reversible and concerted atom diffusion on supported gold nanoparticles. J. Phys. Mater. 2020, 3, 024009.
doi: 10.1088/2515-7639/ab82b4
-
[134]
Buurlage, J. W.; Kohr, H.; Palenstijn, W. J.; Batenburg, K. J. Real-time quasi-3D tomographic reconstruction. Meas. Sci. Technol. 2018, 29, 064005.
doi: 10.1088/1361-6501/aab754
-
[135]
Ma, Y.; Teo, J. H.; Kitsche, D.; Diemant, T.; Strauss, F.; Ma, Y.; Goonetilleke, D.; Janek, J.; Bianchini, M.; Brezesinski, T. Cycling performance and limitations of LiNiO2 in solid-state batteries. ACS Energy Lett. 2021, 6, 3020-3028.
doi: 10.1021/acsenergylett.1c01447
-
[136]
Li, W.; Erickson, E. M.; Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 2020, 5, 26-34.
doi: 10.1038/s41560-019-0513-0
-
[137]
Wang, C.; Han, L.; Zhang, R.; Cheng, H.; Mu, L.; Kisslinger, K.; Zou, P.; Ren, Y.; Cao, P.; Lin, F.; Xin, H. L. Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter 2021, 4, 2013-2026.
doi: 10.1016/j.matt.2021.03.012
-
[138]
Kwon, S. G.; Krylova, G.; Phillips, P. J.; Klie, R. F.; Chattopadhyay, S.; Shibata, T.; Bunel, E. E.; Liu, Y.; Prakapenka, V. B.; Lee, B.; Shevchenko, E. V. Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nat. Mater. 2015, 14, 215-223.
doi: 10.1038/nmat4115
-
[139]
Liu, L.; Zhang, S.; Bowden, M. E.; Chaudhuri, J.; De Yoreo, J. J. In situ TEM and AFM investigation of morphological controls during the growth of single crystal BaWO4. Cryst. Growth Des. 2018, 18, 1367-1375.
doi: 10.1021/acs.cgd.7b01216
-
[140]
Van Driessche, A. E. S.; Van Gerven, N.; Bomans, P. H. H.; Joosten, R. R. M.; Friedrich, H.; Gil-Carton, D.; Sommerdijk, N. A. J. M.; Sleutel, M. Molecular nucleation mechanisms and control strategies for crystal polymorph selection. Nature 2018, 556, 89-94.
doi: 10.1038/nature25971
-
[141]
Chen, J.; Zhu, E.; Liu, J.; Zhang, S.; Lin, Z.; Duan, X.; Heinz, H.; Huang, Y.; De Yoreo, J. J. Building two-dimensional materials one row at a time: avoiding the nucleation barrier. Science 2018, 362, 1135-1139.
doi: 10.1126/science.aau4146
-
[142]
Liu, L.; Nakouzi, E.; Sushko, M. L.; Schenter, G. K.; Mundy, C. J.; Chun, J.; De Yoreo, J. J. Connecting energetics to dynamics in particle growth by oriented attachment using real-time observations. Nat. Commun. 2020, 11, 1045.
-
[143]
Maliakkal, C. B.; Martensson, E. K.; Tornberg, M. U.; Jacobsson, D.; Persson, A. R.; Johansson, J.; Wallenberg, L. R.; Dick, K. A. Independent control of nucleation and layer growth in nanowires. ACS Nano 2020, 14, 3868-3875.
-
[144]
Pryor, A.; Yang, Y.; Rana, A.; Gallagher-Jones, M.; Zhou, J.; Lo, Y. H.; Melinte, G.; Chiu, W.; Rodriguez, J. A.; Miao, J. GENFIRE: a generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. Sci. Rep. 2017, 7, 1-12.
-
[145]
Yang, Y.; Chen, C. C.; Scott, M. C.; Ophus, C.; Xu, R.; Pryor, A.; Wu, L.; Sun, F.; Theis, W.; Zhou, J.; Eisenbach, M.; Kent, P. R. C.; Sabirianov, R. F.; Zeng, H.; Ercius, P.; Miao, J. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 2017, 542, 75-79.
-
[146]
Pelz, P. M.; Groschner, C.; Bruefach, A.; Satariano, A.; Ophus, C.; Scott, M. C. Simultaneous successive twinning captured by atomic electron tomography. ACS Nano 2022, 16, 588-596.
-
[147]
Wang, C.; Duan, H.; Chen, C.; Wu, P.; Qi, D.; Ye, H.; Jin, H. J.; Xin, H. L.; Du, K. Three-dimensional atomic structure of grain boundaries resolved by atomic-resolution electron tomography. Matter 2020, 3, 1999-2011.
doi: 10.1016/j.matt.2020.09.003
-
[148]
Wang, C.; Liu, H.; Duan, H.; Li, Z.; Zeng, P.; Zou, P.; Wang, X.; Ye, H.; Xin, H. L.; Du, K. 3D atomic imaging of low-coordinated active sites in solid-state dealloyed hierarchical nanoporous gold. J. Mater. Chem. A 2021, 9, 25513-25521.
doi: 10.1039/D1TA05942D
-
[149]
Duan, H. C.; Wang, C. Y.; Ye, H. Q.; Du, K. Electron tomography analysis on the structure and chemical composition of nanoporous metal surfaces. Acta Met. Sin 2022, Doi: 10.11900/0412.1961.2022.00133.
doi: 10.11900/0412.1961.2022.00133
-
[150]
Thiry, D.; Molina-Luna, L.; Gautron, E.; Stephant, N.; Chauvin, A.; Du, K.; Ding, J.; Choi, C. H.; Tessier, P. Y.; El Mel, A. A. The Kirkendall effect in binary alloys: trapping gold in copper oxide nanoshells. Chem. Mater. 2015, 27, 6374-6384.
doi: 10.1021/acs.chemmater.5b02391
-
[151]
Shen, L.; Yu, L.; Yu, X. Y.; Zhang, X.; Lou, X. W. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 2015, 54, 1868-1872.
doi: 10.1002/anie.201409776
-
[152]
Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711-714.
doi: 10.1126/science.1096566
-
[153]
Deliere, L.; Coasne, B.; Topin, S.; Gréau, C.; Moulin, C.; Farrusseng, D. Breakthrough in xenon capture and purification using adsorbent-supported silver nanoparticles. Chem. -Eur. J. 2016, 22, 9660-9666.
-
[154]
Cobley, C. M.; Xia, Y. Engineering the properties of metal nanostructures via galvanic replacement reactions. Mater. Sci. Eng. R Rep. 2010, 70, 44-62.
-
[155]
da Silva, A. G. M.; Rodrigues, T. S.; Haigh, S. J.; Camargo, P. H. C. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chem. Commun. 2017, 53, 7135-7148.
-
[156]
Crowther, R. A.; DeRosier, D. J.; Klug, A. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. Math. Phys. Sci. 1970, 317, 319-340.
-
[157]
Andersen, A. H.; Kak, A. C. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason. Imaging 1984, 6, 81-94.
-
[158]
Boudjelal, A.; Messali, Z.; Elmoataz, A.; Attallah, B. Improved simultaneous algebraic reconstruction technique algorithm for positronemission tomography image reconstruction via minimizing the fast total variation. J. Med. Imaging Radiat. Sci. 2017, 48, 385-393.
-
[159]
Morgan, D.; Jacobs, R. Opportunities and challenges for machine learning in materials science. Annu. Rev. Mater. Res. 2020, 50, 71-103.
-
[160]
Wang, G.; Ye, J. C.; Mueller, K.; Fessler, J. A. Image reconstruction is a new frontier of machine learning. IEEE Trans. Med. Imaging 2018, 37, 1289-1296.
-
[161]
Kan, A. Machine learning applications in cell image analysis. Immunol. Cell Biol. 2017, 95, 525-530.
-
[162]
Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547-555.
-
[163]
Elaziz, M. A.; Hosny, K. M.; Salah, A.; Darwish, M. M.; Lu, S.; Sahlol, A. T. New machine learning method for image-based diagnosis of COVID-19. Plos One 2020, 15, e0235187.
-
[164]
Singh, A.; Thakur, N.; Sharma, A. A review of supervised machine learning algorithms. 2016 3rd Int. Conf. Comput. Sustain. Glob. Dev. INDIACom 2016, 1310-1315.
-
[165]
Wang, P.; Fan, E.; Wang, P. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognit. Lett. 2021, 141, 61-67.
-
[166]
Love, B. C. Comparing supervised and unsupervised category learning. Psychon. Bull. Rev. 2002, 9, 829-835.
-
[167]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436-444.
-
[168]
Tian, C.; Fei, L.; Zheng, W.; Xu, Y.; Zuo, W.; Lin, C. W. Deep learning on image denoising: an overview. Neural Netw. 2020, 131, 251-275.
-
[169]
Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M. S. Deep learning for visual understanding: a review. Neurocomputing 2016, 187, 27-48.
-
[170]
Wang, Z.; Chen, J.; Hoi, S. C. H. Deep learning for image superresolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3365-3387.
-
[171]
Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3523-3542.
-
[172]
Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A. A. Generative adversarial networks: an overview. IEEE Signal Process. Mag. 2018, 35, 53-65.
-
[173]
Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 2015, 234-241.
-
[174]
Zhou, Z.; Siddiquee, M. M. R.; Tajbakhsh, N.; Liang, J. UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 2020, 39, 1856-1867.
-
[175]
Iandola, F.; Moskewicz, M.; Karayev, S.; Girshick, R.; Darrell, T.; Keutzer, K. DenseNet: implementing efficient convnet descriptor pyramids. 2014.
-
[176]
Han, Y.; Jang, J.; Cha, E.; Lee, J.; Chung, H.; Jeong, M.; Kim, T. G.; Chae, B. G.; Kim, H. G.; Jun, S.; Hwang, S.; Lee, E.; Ye, J. C. Deep learning STEM-EDX tomography of nanocrystals. Nat. Mach. Intell. 2021, 3, 267-274.
-
[177]
Cha, E.; Chung, H.; Jang, J.; Lee, J.; Lee, E.; Ye, J. C. Low-dose sparse-view HAADF-STEM-EDX tomography of nanocrystals using unsupervised deep learning. ACS Nano 2022, 16, 10314-10326.
-
[178]
Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S. S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. Med. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016 2016, 424-432.
-
[179]
Cressey, D.; Callaway, E. Cryo-electron microscopy wins chemistry Nobel. Nature 2017, 550, 167-167.
-
[180]
Textor, M.; de Jonge, N. Strategies for preparing graphene liquid cells for transmission electron microscopy. Nano Lett. 2018, 18, 3313-3321.