Porous Metal-Organic Framework-Polymer Composites Using High Internal Phase Emulsion Templates: A Review
- Corresponding author: Jin-Jin Li, lijinjin@ecust.edu.cn Zhenhao Xi, zhhxi@ecust.edu.cn
Citation: Yue Qiu, Jin-Jin Li, Ling Zhao, Zhenhao Xi, Weikang Yuan. Porous Metal-Organic Framework-Polymer Composites Using High Internal Phase Emulsion Templates: A Review[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 221206. doi: 10.14102/j.cnki.0254-5861.2022-0179
Lissant, K. J. (ed. ) Emulsions and Emulsion Technology, Part 1 1974, Marcel Dekker, New York, Chap. Ⅰ.
Cameron, N. R.; Sherrington, D. C. High internal phase emulsions (HIPEs) - structure, properties and use in polymer preparation. In: biopolymers liquid crystalline polymers phase emulsion. Adv. Polym. Sci. Springer, Berlin, Heidelberg 1996, 126, 163-214.
Gao, H.; Ma, L.; Cheng, C.; Liu, J.; Liang, R.; Zou, L.; Liu, W.; McClements, D. J. Review of recent advances in the preparation, properties, and applications of high internal phase emulsions. Trends Food Sci. Technol. 2021, 112, 36-49.
doi: 10.1016/j.tifs.2021.03.041
Silverstein, M. S. PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog. Polym. Sci. 2014, 39, 199-234.
doi: 10.1016/j.progpolymsci.2013.07.003
Zhang, T.; Sanguramath, R. A.; Israel, S.; Silverstein, M. S. Emulsion templating: porous polymers and beyond. Macromolecules 2019, 52, 5445-5479.
doi: 10.1021/acs.macromol.8b02576
Chevalier, Y.; Bolzinger, M. -A. Emulsions stabilized with solid nano-particles: Pickering emulsions. Colloids Surf. Physicochem. Eng. Asp. 2013, 439, 23-34.
doi: 10.1016/j.colsurfa.2013.02.054
Horozov, T. S.; Binks, B. P. Particle‐stabilized emulsions: a bilayer or a bridging monolayer? Angew. Chem. Int. Ed. 2006, 45, 773-776.
doi: 10.1002/anie.200503131
Ramsden, W. Separation of solids in the surface-layers of solutions and 'suspensions' (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). —Preliminary account. Proc. R. Soc. Lond. 1904, 72, 156-164.
doi: 10.1098/rspl.1903.0034
Pickering, S. U. Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001-2021.
doi: 10.1039/CT9079102001
Aveyard, R.; Binks, B. P.; Clint, J. H. Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 2003, 100-102, 503-546.
Kralchevsky, P. A.; Ivanov, I. B.; Ananthapadmanabhan, K. P.; Lips, A. On the thermodynamics of particle-stabilized emulsions: curvature effects and catastrophic phase inversion. Langmuir 2005, 21, 50-63.
doi: 10.1021/la047793d
Binks, B. P.; Lumsdon, S. O. Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica. Langmuir 2000, 16, 2539-2547.
doi: 10.1021/la991081j
Cai, D.; Thijssen, J. H. T.; Clegg, P. S. Making non-aqueous high internal phase Pickering emulsions: influence of added polymer and selective drying. ACS Appl. Mater. Interfaces 2014, 6, 9214-9219.
doi: 10.1021/am501328r
Gurevitch, I.; Silverstein, M. S. Polymerized Pickering HIPEs: effects of synthesis parameters on porous structure. J. Polym. Sci. Part Polym. Chem. 2010, 48, 1516-1525.
Zheng, Z.; Zheng, X.; Wang, H.; Du, Q. Macroporous graphene oxide-polymer composite prepared through Pickering high internal phase emulsions. ACS Appl. Mater. Interfaces 2013, 5, 7974-7982.
doi: 10.1021/am4020549
Ikem, V. O.; Menner, A.; Bismarck, A. High internal phase emulsions stabilized solely by functionalized silica particles. Angew. Chem. Int. Ed. 2008, 47, 8277-8279.
doi: 10.1002/anie.200802244
Menner, A.; Ikem, V.; Salgueiro, M.; Shaffer, M. S. P.; Bismarck, A. High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles. Chem. Commun. 2007, 41, 4274-4276.
Colver, P. J.; Bon, S. A. F. Cellular polymer monoliths made via Pickering high internal phase emulsions. Chem. Mater. 2007, 19, 1537-1539.
doi: 10.1021/cm0628810
Zhang, S.; Chen, J. PMMA based foams made via surfactant-free high internal phase emulsion templates. Chem. Commun. 2009, 16, 2217-2219.
Li, Z.; Ming, T.; Wang, J.; Ngai, T. High internal phase emulsions stabilized solely by microgel particles. Angew. Chem. Int. Ed. 2009, 48, 8490-8493.
doi: 10.1002/anie.200902103
Chen, Y.; Ballard, N.; Bon, S. A. F. Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly(N-isopropylacrylamide) nanogel dispersions. Chem. Commun. 2013, 49, 1524-1526.
doi: 10.1039/c2cc38200h
Capron, I.; Cathala, B. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules 2013, 14, 291-296.
doi: 10.1021/bm301871k
Kim, K.; Kim, S.; Ryu, J.; Jeon, J.; Jang, S. G.; Kim, H.; Gweon, D. -G.; Im, W. B.; Han, Y.; Kim, H.; Choi, S. Q. Processable high internal phase Pickering emulsions using depletion attraction. Nat. Commun. 2017, 8, 14305.
doi: 10.1038/ncomms14305
Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
doi: 10.1126/science.1230444
Xie, K.; Fu, Q.; Xu, C.; Lu, H.; Zhao, Q.; Curtain, R.; Gu, D.; Webley, P. A.; Qiao, G. G. Continuous assembly of a polymer on a metal-organic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. Energy Environ. Sci. 2018, 11, 544-550.
doi: 10.1039/C7EE02820B
Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438-1511.
doi: 10.1021/acs.chemrev.9b00223
Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 2018, 47, 4710-4728.
doi: 10.1039/C7CS00861A
Bai, Y.; Dou, Y.; Xie, L. -H.; Rutledge, W.; Li, J. -R.; Zhou, H. -C. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327-2367.
doi: 10.1039/C5CS00837A
Lorignon, F.; Gossard, A.; Carboni, M. Hierarchically porous monolithic MOFs: an ongoing challenge for industrial-scale effluent treatment. Chem. Eng. J. 2020, 393, 124765.
doi: 10.1016/j.cej.2020.124765
Fonseca, J.; Gong, T. Fabrication of metal-organic framework architectures with macroscopic size: a review. Coord. Chem. Rev. 2022, 462, 214520.
doi: 10.1016/j.ccr.2022.214520
Zhang, F.; Sha, Y.; Cheng, X.; Zhang, J. Pickering emulsions stabilized by metal-organic frameworks, graphitic carbon nitride and graphene oxide. Soft Matter. 2022, 18, 10-18.
doi: 10.1039/D1SM01540K
Xiao, B.; Yuan, Q. C.; Williams, R. A. Exceptional function of nanoporous metal organic framework particles in emulsion stabilisation. Chem. Commun. 2013, 49, 8208-8210.
doi: 10.1039/c3cc43689f
Huo, J.; Marcello, M.; Garai, A.; Bradshaw, D. MOF-polymer composite microcapsules derived from Pickering emulsions. Adv. Mater. 2013, 25, 2717-2722.
doi: 10.1002/adma.201204913
Zhang, B.; Zhang, J.; Liu, C.; Peng, L.; Sang, X.; Han, B.; Ma, X.; Luo, T.; Tan, X.; Yang, G. High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels. Sci. Rep. 2016, 6, 21401.
doi: 10.1038/srep21401
Zhu, H.; Zhang, Q.; Zhu, S. Assembly of a metal-organic framework into 3D hierarchical porous monoliths using a Pickering high internal phase emulsion template. Chem. -Eur. J. 2016, 22, 8751-8755.
doi: 10.1002/chem.201600313
Wang, J.; Zhu, H.; Li, B. G.; Zhu, S. Interconnected porous monolith prepared via UiO-66 stabilized Pickering high internal phase emulsion template. Chem. -Eur. J. 2018, 24, 16426-16431.
doi: 10.1002/chem.201803628
Lorignon, F.; Gossard, A.; Carboni, M.; Meyer, D. From wastes to interconnected porous monolith: upcycling of Al-based metal organic framework via Pickering emulsion template. Mater. Lett. 2021, 296, 129931.
doi: 10.1016/j.matlet.2021.129931
Huang, X. -C.; Lin, Y. -Y.; Zhang, J. -P.; Chen, X. -M. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(Ⅱ) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 2006, 45, 1557-1559.
doi: 10.1002/anie.200503778
Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10186-10191.
doi: 10.1073/pnas.0602439103
Sabouni, R.; Gomaa, H. G. Preparation of Pickering emulsions stabilized by metal organic frameworks using oscillatory woven metal micro-screen. Soft Matter 2015, 11, 4507-4516.
doi: 10.1039/C5SM00922G
Tan, C.; Lee, M. C.; Arshadi, M.; Azizi, M.; Abbaspourrad, A. A spiderweb-like metal-organic framework multifunctional foam. Angew. Chem. Int. Ed. 2020, 59, 9506-9513.
doi: 10.1002/anie.201916211
Jin, P.; Tan, W.; Huo, J.; Liu, T.; Liang, Y.; Wang, S.; Bradshaw, D. Hierarchically porous MOF/polymer composites via interfacial nanoassembly and emulsion polymerization. J. Mater. Chem. A 2018, 6, 20473-20479.
doi: 10.1039/C8TA06766J
Wang, J.; Qin, J.; Zhu, H.; Li, B. G.; Zhu, S. Hierarchically porous monolith with high MOF accessibility and strengthened mechanical properties using water-in-oil high internal phase emulsion template. Adv. Mater. Interface 2021, 8, 2100620.
doi: 10.1002/admi.202100620
Kovacic, S.; Mazaj, M.; Jeselnik, M.; Pahovnik, D.; Zagar, E.; Slugovc, C.; Logar, N. Z. Synthesis and catalytic performance of hierarchically porous MIL-100(Fe)@polyHIPE hybrid membranes. Macromol. Rapid Commun. 2015, 36, 1605-1611.
doi: 10.1002/marc.201500241
Jiang, X.; Pan, H.; Ruan, G.; Hu, H.; Huang, Y.; Chen, Z. Wettability tunable metal organic framework functionalized high internal phase emulsion porous monoliths for fast solid-phase extraction and sensitive analysis of hydrophilic heterocyclic amines. J. Hazard. Mater. 2022, 431, 128565.
doi: 10.1016/j.jhazmat.2022.128565
Zhang, J.; Han, B. Supercritical or compressed CO2 as a stimulus for tuning surfactant aggregations. Acc. Chem. Res. 2013, 46, 425-433.
doi: 10.1021/ar300194j
Butler, R.; Davies, C. M.; Cooper, A. I. Emulsion templating using high internal phase supercritical fluid emulsions. Adv. Mater. 2001, 13, 1459-1463.
doi: 10.1002/1521-4095(200110)13:19<1459::AID-ADMA1459>3.0.CO;2-K
Yang, Z.; Cao, L.; Li, J.; Lin, J.; Wang, J. Facile synthesis of Cu-BDC/poly(N-methylol acrylamide) HIPE monoliths via CO2-in-water emulsion stabilized by metal-organic framework. Polymer 2018, 153, 17-23.
doi: 10.1016/j.polymer.2018.07.085
Yang, Z.; Cao, L.; Qian, Y. Effect of comonomer on the Cu-BDC/poly(NMA-co-SAS) foams templating from CO2-in-water emulsion: adsorptive and bacteriostatic applications. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 124959.
doi: 10.1016/j.colsurfa.2020.124959
Dong, Y.; Cao, L.; Li, J.; Yang, Y.; Wang, J. Facile preparation of UiO-66/PAM monoliths via CO2-in-water HIPEs and their applications. RSC. Adv. 2018, 8, 32358-32367.
doi: 10.1039/C8RA05809A
Yang, Y.; Cao, L.; Li, J.; Dong, Y.; Wang, J. High‐performance composite monolith synthesized via HKUST-1 stabilized HIPEs and its adsorptive properties. Macromol. Mater. Eng. 2018, 303, 1800426.
doi: 10.1002/mame.201800426
Yang, X.; Hao, Y.; Cao, L. Bio-compatible Ca-BDC/polymer monolithic composites templated from bio-active Ca-BDC co-stabilized CO2-in-water high internal phase emulsions. Polymers 2020, 12, 931.
doi: 10.3390/polym12040931
Dong, K.; Liu, X.; Dong, H.; Zhang, X.; Zhang, S. Multiscale studies on ionic liquids. Chem. Rev. 2017, 117, 6636-6695.
doi: 10.1021/acs.chemrev.6b00776
Qiao, Y.; Ma, W.; Theyssen, N.; Chen, C.; Hou, Z. Temperature-responsive ionic liquids: fundamental behaviors and catalytic applications. Chem. Rev. 2017, 117, 6881-6928.
doi: 10.1021/acs.chemrev.6b00652
Li, Z.; Zhang, J.; Luo, T.; Tan, X.; Liu, C.; Sang, X.; Ma, X.; Han, B.; Yang, G. High internal ionic liquid phase emulsion stabilized by metal-organic frameworks. Soft Matter 2016, 12, 8841-8846.
doi: 10.1039/C6SM01610C
Zhan, G.; Zeng, H. C. Alternative synthetic approaches for metal-organic frameworks: transformation from solid matters. Chem. Commun. 2017, 53, 72-81.
doi: 10.1039/C6CC07094A
Mazaj, M.; Logar, N. Z.; Žagar, E.; Kovačič, S. A facile strategy towards a highly accessible and hydrostable MOF-phase within hybrid polyHIPEs through in situ metal-oxide recrystallization. J. Mater. Chem. A 2017, 5, 1967-1971.
doi: 10.1039/C6TA10886E
Zhu, J.; Wu, L.; Bu, Z.; Jie, S.; Li, B. -G. Polyethylenimine-grafted HKUST-type MOF/polyHIPE porous composites (PEI@PGD-H) as highly efficient CO2 adsorbents. Ind. Eng. Chem. Res. 2019, 58, 4257-4266.
doi: 10.1021/acs.iecr.9b00213
Yang, Y.; Li, J.; Dong, Y.; Wang, J.; Cao, L. Preparation of porous monoliths via CO2-in-water HIPEs template and the in situ growth of metal organic frameworks on it for multiple applications. Polym. Adv. Technol. 2020, 31, 1591-1601.
doi: 10.1002/pat.4888
Liu, S.; Lu, G.; Ou, H.; Shi, R.; Pan, J. Boronate affinity imprinted hydrogel sorbent from biphasic synergistic high internal phase emulsions reactor for specific enrichment of luteolin. J. Colloid Interface Sci. 2021, 601, 782-792.
doi: 10.1016/j.jcis.2021.05.165
Wickenheisser, M.; Janiak, C. Hierarchical embedding of micro-mesoporous MIL-101(Cr) in macroporous poly(2-hydroxyethyl methacrylate) high internal phase emulsions with monolithic shape for vapor adsorption applications. Microporous Mesoporous Mater. 2015, 204, 242-250.
doi: 10.1016/j.micromeso.2014.11.025
Wickenheisser, M.; Paul, T.; Janiak, C. Prospects of monolithic MIL-MOF@poly(NIPAM)HIPE composites as water sorption materials. Microporous Mesoporous Mater. 2016, 220, 258-269.
doi: 10.1016/j.micromeso.2015.09.008
Niu, H. Y.; Cao, L. Q.; Yang, X. L.; Liu, K. N.; Liu, L.; Wang, J. D. In situ growth of the ZIF-8 on the polymer monolith via CO2-in-water HIPEs stabilized using metal oxide nanoparticles and its photocatalytic activity. Polym. Adv. Technol. 2021, 32, 3194-3204.
doi: 10.1002/pat.5331
Kalinovskyy, Y.; Wright, A. J.; Hiscock, J. R.; Watts, T. D.; Williams, R. L.; Cooper, N. J.; Main, M. J.; Holder, S. J.; Blight, B. A. Swell and destroy: a metal-organic framework-containing polymer sponge that immobilizes and catalytically degrades nerve agents. ACS Appl. Mater. Interfaces 2020, 12, 8634-8641.
doi: 10.1021/acsami.9b18478
Wei, Y.; Zhang, Y.; Li, B.; Guan, W.; Yan, C.; Li, X.; Yan, Y. Facile synthesis of metal-organic frameworks embedded in interconnected macroporous polymer as a dual acid-base bifunctional catalyst for efficient conversion of cellulose to 5-hydroxymethylfurfural. Chin. J. Chem. Eng. 2022, 44, 169-181.
doi: 10.1016/j.cjche.2021.06.019
Zhao, J.; Zhang, Y.; Wang, K.; Yan, C.; Da, Z.; Li, C.; Yan, Y. Development of hierarchical porous MOF-based catalyst of UiO-66(Hf) and its application for 5-hydroxymethylfurfural production from cellulose. ChemistrySelect 2018, 3, 11476-11485.
doi: 10.1002/slct.201802423
Ma, C.; Wang, J.; Cao, L. Preparation of macroporous hybrid monoliths via iron-based MOFs-stabilized CO2-in-water HIPEs and use for β-amylase immobilization. Polym. Adv. Technol. 2020, 31, 2967-2979.
doi: 10.1002/pat.5019
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Xiaoyan Peng , Xuanhao Wu , Fan Yang , Yefei Tian , Mingming Zhang , Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251
Kang Wang , Qinglin Zhou , Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Xue-Zhi Wang , Yi-Tong Liu , Chuang-Wei Zhou , Bei Wang , Dong Luo , Mo Xie , Meng-Ying Sun , Yong-Liang Huang , Jie Luo , Yan Wu , Shuixing Zhang , Xiao-Ping Zhou , Dan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Benjian Xin , Rui Wang , Lili Liu , Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116
Yan Zou , Yin-Shuang Hu , Deng-Hui Tian , Hong Wu , Xiaoshu Lv , Guangming Jiang , Yu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
Zhaohong Chen , Mengzhen Li , Jinfei Lan , Shengqian Hu , Xiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Lihua Ma , Song Guo , Zhi-Ming Zhang , Jin-Zhong Wang , Tong-Bu Lu , Xian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661