Citation: Yue Qiu, Jin-Jin Li, Ling Zhao, Zhenhao Xi, Weikang Yuan. Porous Metal-Organic Framework-Polymer Composites Using High Internal Phase Emulsion Templates: A Review[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 221206. doi: 10.14102/j.cnki.0254-5861.2022-0179 shu

Porous Metal-Organic Framework-Polymer Composites Using High Internal Phase Emulsion Templates: A Review






  • Author Bio: Yue Qiu received her bachelor's degree from East China University of Science and Technology (ECUST) in 2021. She is currently studying for her master's degree at school of chemical engineering, ECUST. Her research work focuses on the interface stability mechanism of HIPE and the fabrication of porous polymeric materials
    Jin-Jin Li is an associate professor at School of chemical engineering, East China University of Science and Technology. Her research focuses on the synthesis of functional polymers by controlled radical polymerizations for a wide range of applications, and porous polymers or polymer composites by using HIPE templates
    Ling Zhao is a professor at both of Shanghai Key Laboratory of Multiphase Materials Chemical Engineering and State Key Laboratory of Chemical Engineering, East China University of Science and Technology. Her research focuses on multiphase reaction and transfer: (Ⅰ) industrial reaction process development and (Ⅱ) supercritical fluid assisted polymerization and polymer processing
    Zhenhao Xi is a professor at both of Shanghai Key Laboratory of Multiphase Materials Chemical Engineering and State Key Laboratory of Chemical Engineering, East China University of Science and Technology. He mainly focuses on the researches of polymer reaction engineering and the high-added value polymeric materials
    Weikang Yuan is an academician of the Chinese Academy of Engineering and a distinguished professor at State Key Laboratory of Chemical Engineering, East China University of Science and Technology. He has been engaged in chemical engineering and industrial reactor development, with chemical reaction engineering as the main direction
  • Corresponding author: Jin-Jin Li, lijinjin@ecust.edu.cn Zhenhao Xi, zhhxi@ecust.edu.cn
  • Received Date: 1 August 2022
    Accepted Date: 26 August 2022
    Available Online: 31 August 2022

Figures(8)

  • As promising engineering materials for green and sustainable processes, porous metalorganic framework (MOF)-polymer composites show great potential in applications, including adsorption, separation, catalysis, and bioengineering. Owing to the mild and scalable operation, porous polymeric materials derived from high internal phase emulsion templates (polyHIPE) have received great interests in recent decades. In this contribution, research progress of the preparation of porous MOF@polyHIPE composites and their applications are reviewed, highlighting how can MOF particles be shaped by HIPE templates, in particular the polymerizable ones. Four different emulsion templates stabilized by MOFs and the applications of corresponding MOF@polyHIPE are included. Hopefully, both the state-of-art and future directions present herein can give rise to the development of high-performance porous MOF@polyHIPEs.
  • 加载中
    1. [1]

      Lissant, K. J. (ed. ) Emulsions and Emulsion Technology, Part 1 1974, Marcel Dekker, New York, Chap. Ⅰ.

    2. [2]

      Cameron, N. R.; Sherrington, D. C. High internal phase emulsions (HIPEs) - structure, properties and use in polymer preparation. In: biopolymers liquid crystalline polymers phase emulsion. Adv. Polym. Sci. Springer, Berlin, Heidelberg 1996, 126, 163-214.

    3. [3]

      Gao, H.; Ma, L.; Cheng, C.; Liu, J.; Liang, R.; Zou, L.; Liu, W.; McClements, D. J. Review of recent advances in the preparation, properties, and applications of high internal phase emulsions. Trends Food Sci. Technol. 2021, 112, 36-49.  doi: 10.1016/j.tifs.2021.03.041

    4. [4]

      Silverstein, M. S. PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog. Polym. Sci. 2014, 39, 199-234.  doi: 10.1016/j.progpolymsci.2013.07.003

    5. [5]

      Zhang, T.; Sanguramath, R. A.; Israel, S.; Silverstein, M. S. Emulsion templating: porous polymers and beyond. Macromolecules 2019, 52, 5445-5479.  doi: 10.1021/acs.macromol.8b02576

    6. [6]

      Chevalier, Y.; Bolzinger, M. -A. Emulsions stabilized with solid nano-particles: Pickering emulsions. Colloids Surf. Physicochem. Eng. Asp. 2013, 439, 23-34.  doi: 10.1016/j.colsurfa.2013.02.054

    7. [7]

      Horozov, T. S.; Binks, B. P. Particle‐stabilized emulsions: a bilayer or a bridging monolayer? Angew. Chem. Int. Ed. 2006, 45, 773-776.  doi: 10.1002/anie.200503131

    8. [8]

      Ramsden, W. Separation of solids in the surface-layers of solutions and 'suspensions' (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). —Preliminary account. Proc. R. Soc. Lond. 1904, 72, 156-164.  doi: 10.1098/rspl.1903.0034

    9. [9]

      Pickering, S. U. Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001-2021.  doi: 10.1039/CT9079102001

    10. [10]

      Aveyard, R.; Binks, B. P.; Clint, J. H. Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 2003, 100-102, 503-546.

    11. [11]

      Kralchevsky, P. A.; Ivanov, I. B.; Ananthapadmanabhan, K. P.; Lips, A. On the thermodynamics of particle-stabilized emulsions: curvature effects and catastrophic phase inversion. Langmuir 2005, 21, 50-63.  doi: 10.1021/la047793d

    12. [12]

      Binks, B. P.; Lumsdon, S. O. Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica. Langmuir 2000, 16, 2539-2547.  doi: 10.1021/la991081j

    13. [13]

      Cai, D.; Thijssen, J. H. T.; Clegg, P. S. Making non-aqueous high internal phase Pickering emulsions: influence of added polymer and selective drying. ACS Appl. Mater. Interfaces 2014, 6, 9214-9219.  doi: 10.1021/am501328r

    14. [14]

      Gurevitch, I.; Silverstein, M. S. Polymerized Pickering HIPEs: effects of synthesis parameters on porous structure. J. Polym. Sci. Part Polym. Chem. 2010, 48, 1516-1525.

    15. [15]

      Zheng, Z.; Zheng, X.; Wang, H.; Du, Q. Macroporous graphene oxide-polymer composite prepared through Pickering high internal phase emulsions. ACS Appl. Mater. Interfaces 2013, 5, 7974-7982.  doi: 10.1021/am4020549

    16. [16]

      Ikem, V. O.; Menner, A.; Bismarck, A. High internal phase emulsions stabilized solely by functionalized silica particles. Angew. Chem. Int. Ed. 2008, 47, 8277-8279.  doi: 10.1002/anie.200802244

    17. [17]

      Menner, A.; Ikem, V.; Salgueiro, M.; Shaffer, M. S. P.; Bismarck, A. High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles. Chem. Commun. 2007, 41, 4274-4276.

    18. [18]

      Colver, P. J.; Bon, S. A. F. Cellular polymer monoliths made via Pickering high internal phase emulsions. Chem. Mater. 2007, 19, 1537-1539.  doi: 10.1021/cm0628810

    19. [19]

      Zhang, S.; Chen, J. PMMA based foams made via surfactant-free high internal phase emulsion templates. Chem. Commun. 2009, 16, 2217-2219.

    20. [20]

      Li, Z.; Ming, T.; Wang, J.; Ngai, T. High internal phase emulsions stabilized solely by microgel particles. Angew. Chem. Int. Ed. 2009, 48, 8490-8493.  doi: 10.1002/anie.200902103

    21. [21]

      Chen, Y.; Ballard, N.; Bon, S. A. F. Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly(N-isopropylacrylamide) nanogel dispersions. Chem. Commun. 2013, 49, 1524-1526.  doi: 10.1039/c2cc38200h

    22. [22]

      Capron, I.; Cathala, B. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules 2013, 14, 291-296.  doi: 10.1021/bm301871k

    23. [23]

      Kim, K.; Kim, S.; Ryu, J.; Jeon, J.; Jang, S. G.; Kim, H.; Gweon, D. -G.; Im, W. B.; Han, Y.; Kim, H.; Choi, S. Q. Processable high internal phase Pickering emulsions using depletion attraction. Nat. Commun. 2017, 8, 14305.  doi: 10.1038/ncomms14305

    24. [24]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.  doi: 10.1126/science.1230444

    25. [25]

      Xie, K.; Fu, Q.; Xu, C.; Lu, H.; Zhao, Q.; Curtain, R.; Gu, D.; Webley, P. A.; Qiao, G. G. Continuous assembly of a polymer on a metal-organic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. Energy Environ. Sci. 2018, 11, 544-550.  doi: 10.1039/C7EE02820B

    26. [26]

      Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438-1511.  doi: 10.1021/acs.chemrev.9b00223

    27. [27]

      Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 2018, 47, 4710-4728.  doi: 10.1039/C7CS00861A

    28. [28]

      Bai, Y.; Dou, Y.; Xie, L. -H.; Rutledge, W.; Li, J. -R.; Zhou, H. -C. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327-2367.  doi: 10.1039/C5CS00837A

    29. [29]

      Lorignon, F.; Gossard, A.; Carboni, M. Hierarchically porous monolithic MOFs: an ongoing challenge for industrial-scale effluent treatment. Chem. Eng. J. 2020, 393, 124765.  doi: 10.1016/j.cej.2020.124765

    30. [30]

      Fonseca, J.; Gong, T. Fabrication of metal-organic framework architectures with macroscopic size: a review. Coord. Chem. Rev. 2022, 462, 214520.  doi: 10.1016/j.ccr.2022.214520

    31. [31]

      Zhang, F.; Sha, Y.; Cheng, X.; Zhang, J. Pickering emulsions stabilized by metal-organic frameworks, graphitic carbon nitride and graphene oxide. Soft Matter. 2022, 18, 10-18.  doi: 10.1039/D1SM01540K

    32. [32]

      Xiao, B.; Yuan, Q. C.; Williams, R. A. Exceptional function of nanoporous metal organic framework particles in emulsion stabilisation. Chem. Commun. 2013, 49, 8208-8210.  doi: 10.1039/c3cc43689f

    33. [33]

      Huo, J.; Marcello, M.; Garai, A.; Bradshaw, D. MOF-polymer composite microcapsules derived from Pickering emulsions. Adv. Mater. 2013, 25, 2717-2722.  doi: 10.1002/adma.201204913

    34. [34]

      Zhang, B.; Zhang, J.; Liu, C.; Peng, L.; Sang, X.; Han, B.; Ma, X.; Luo, T.; Tan, X.; Yang, G. High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels. Sci. Rep. 2016, 6, 21401.  doi: 10.1038/srep21401

    35. [35]

      Zhu, H.; Zhang, Q.; Zhu, S. Assembly of a metal-organic framework into 3D hierarchical porous monoliths using a Pickering high internal phase emulsion template. Chem. -Eur. J. 2016, 22, 8751-8755.  doi: 10.1002/chem.201600313

    36. [36]

      Wang, J.; Zhu, H.; Li, B. G.; Zhu, S. Interconnected porous monolith prepared via UiO-66 stabilized Pickering high internal phase emulsion template. Chem. -Eur. J. 2018, 24, 16426-16431.  doi: 10.1002/chem.201803628

    37. [37]

      Lorignon, F.; Gossard, A.; Carboni, M.; Meyer, D. From wastes to interconnected porous monolith: upcycling of Al-based metal organic framework via Pickering emulsion template. Mater. Lett. 2021, 296, 129931.  doi: 10.1016/j.matlet.2021.129931

    38. [38]

      Huang, X. -C.; Lin, Y. -Y.; Zhang, J. -P.; Chen, X. -M. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(Ⅱ) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 2006, 45, 1557-1559.  doi: 10.1002/anie.200503778

    39. [39]

      Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10186-10191.  doi: 10.1073/pnas.0602439103

    40. [40]

      Sabouni, R.; Gomaa, H. G. Preparation of Pickering emulsions stabilized by metal organic frameworks using oscillatory woven metal micro-screen. Soft Matter 2015, 11, 4507-4516.  doi: 10.1039/C5SM00922G

    41. [41]

      Tan, C.; Lee, M. C.; Arshadi, M.; Azizi, M.; Abbaspourrad, A. A spiderweb-like metal-organic framework multifunctional foam. Angew. Chem. Int. Ed. 2020, 59, 9506-9513.  doi: 10.1002/anie.201916211

    42. [42]

      Jin, P.; Tan, W.; Huo, J.; Liu, T.; Liang, Y.; Wang, S.; Bradshaw, D. Hierarchically porous MOF/polymer composites via interfacial nanoassembly and emulsion polymerization. J. Mater. Chem. A 2018, 6, 20473-20479.  doi: 10.1039/C8TA06766J

    43. [43]

      Wang, J.; Qin, J.; Zhu, H.; Li, B. G.; Zhu, S. Hierarchically porous monolith with high MOF accessibility and strengthened mechanical properties using water-in-oil high internal phase emulsion template. Adv. Mater. Interface 2021, 8, 2100620.  doi: 10.1002/admi.202100620

    44. [44]

      Kovacic, S.; Mazaj, M.; Jeselnik, M.; Pahovnik, D.; Zagar, E.; Slugovc, C.; Logar, N. Z. Synthesis and catalytic performance of hierarchically porous MIL-100(Fe)@polyHIPE hybrid membranes. Macromol. Rapid Commun. 2015, 36, 1605-1611.  doi: 10.1002/marc.201500241

    45. [45]

      Jiang, X.; Pan, H.; Ruan, G.; Hu, H.; Huang, Y.; Chen, Z. Wettability tunable metal organic framework functionalized high internal phase emulsion porous monoliths for fast solid-phase extraction and sensitive analysis of hydrophilic heterocyclic amines. J. Hazard. Mater. 2022, 431, 128565.  doi: 10.1016/j.jhazmat.2022.128565

    46. [46]

      Zhang, J.; Han, B. Supercritical or compressed CO2 as a stimulus for tuning surfactant aggregations. Acc. Chem. Res. 2013, 46, 425-433.  doi: 10.1021/ar300194j

    47. [47]

      Butler, R.; Davies, C. M.; Cooper, A. I. Emulsion templating using high internal phase supercritical fluid emulsions. Adv. Mater. 2001, 13, 1459-1463.  doi: 10.1002/1521-4095(200110)13:19<1459::AID-ADMA1459>3.0.CO;2-K

    48. [48]

      Yang, Z.; Cao, L.; Li, J.; Lin, J.; Wang, J. Facile synthesis of Cu-BDC/poly(N-methylol acrylamide) HIPE monoliths via CO2-in-water emulsion stabilized by metal-organic framework. Polymer 2018, 153, 17-23.  doi: 10.1016/j.polymer.2018.07.085

    49. [49]

      Yang, Z.; Cao, L.; Qian, Y. Effect of comonomer on the Cu-BDC/poly(NMA-co-SAS) foams templating from CO2-in-water emulsion: adsorptive and bacteriostatic applications. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 124959.  doi: 10.1016/j.colsurfa.2020.124959

    50. [50]

      Dong, Y.; Cao, L.; Li, J.; Yang, Y.; Wang, J. Facile preparation of UiO-66/PAM monoliths via CO2-in-water HIPEs and their applications. RSC. Adv. 2018, 8, 32358-32367.  doi: 10.1039/C8RA05809A

    51. [51]

      Yang, Y.; Cao, L.; Li, J.; Dong, Y.; Wang, J. High‐performance composite monolith synthesized via HKUST-1 stabilized HIPEs and its adsorptive properties. Macromol. Mater. Eng. 2018, 303, 1800426.  doi: 10.1002/mame.201800426

    52. [52]

      Yang, X.; Hao, Y.; Cao, L. Bio-compatible Ca-BDC/polymer monolithic composites templated from bio-active Ca-BDC co-stabilized CO2-in-water high internal phase emulsions. Polymers 2020, 12, 931.  doi: 10.3390/polym12040931

    53. [53]

      Dong, K.; Liu, X.; Dong, H.; Zhang, X.; Zhang, S. Multiscale studies on ionic liquids. Chem. Rev. 2017, 117, 6636-6695.  doi: 10.1021/acs.chemrev.6b00776

    54. [54]

      Qiao, Y.; Ma, W.; Theyssen, N.; Chen, C.; Hou, Z. Temperature-responsive ionic liquids: fundamental behaviors and catalytic applications. Chem. Rev. 2017, 117, 6881-6928.  doi: 10.1021/acs.chemrev.6b00652

    55. [55]

      Li, Z.; Zhang, J.; Luo, T.; Tan, X.; Liu, C.; Sang, X.; Ma, X.; Han, B.; Yang, G. High internal ionic liquid phase emulsion stabilized by metal-organic frameworks. Soft Matter 2016, 12, 8841-8846.  doi: 10.1039/C6SM01610C

    56. [56]

      Zhan, G.; Zeng, H. C. Alternative synthetic approaches for metal-organic frameworks: transformation from solid matters. Chem. Commun. 2017, 53, 72-81.  doi: 10.1039/C6CC07094A

    57. [57]

      Mazaj, M.; Logar, N. Z.; Žagar, E.; Kovačič, S. A facile strategy towards a highly accessible and hydrostable MOF-phase within hybrid polyHIPEs through in situ metal-oxide recrystallization. J. Mater. Chem. A 2017, 5, 1967-1971.  doi: 10.1039/C6TA10886E

    58. [58]

      Zhu, J.; Wu, L.; Bu, Z.; Jie, S.; Li, B. -G. Polyethylenimine-grafted HKUST-type MOF/polyHIPE porous composites (PEI@PGD-H) as highly efficient CO2 adsorbents. Ind. Eng. Chem. Res. 2019, 58, 4257-4266.  doi: 10.1021/acs.iecr.9b00213

    59. [59]

      Yang, Y.; Li, J.; Dong, Y.; Wang, J.; Cao, L. Preparation of porous monoliths via CO2-in-water HIPEs template and the in situ growth of metal organic frameworks on it for multiple applications. Polym. Adv. Technol. 2020, 31, 1591-1601.  doi: 10.1002/pat.4888

    60. [60]

      Liu, S.; Lu, G.; Ou, H.; Shi, R.; Pan, J. Boronate affinity imprinted hydrogel sorbent from biphasic synergistic high internal phase emulsions reactor for specific enrichment of luteolin. J. Colloid Interface Sci. 2021, 601, 782-792.  doi: 10.1016/j.jcis.2021.05.165

    61. [61]

      Wickenheisser, M.; Janiak, C. Hierarchical embedding of micro-mesoporous MIL-101(Cr) in macroporous poly(2-hydroxyethyl methacrylate) high internal phase emulsions with monolithic shape for vapor adsorption applications. Microporous Mesoporous Mater. 2015, 204, 242-250.  doi: 10.1016/j.micromeso.2014.11.025

    62. [62]

      Wickenheisser, M.; Paul, T.; Janiak, C. Prospects of monolithic MIL-MOF@poly(NIPAM)HIPE composites as water sorption materials. Microporous Mesoporous Mater. 2016, 220, 258-269.  doi: 10.1016/j.micromeso.2015.09.008

    63. [63]

      Niu, H. Y.; Cao, L. Q.; Yang, X. L.; Liu, K. N.; Liu, L.; Wang, J. D. In situ growth of the ZIF-8 on the polymer monolith via CO2-in-water HIPEs stabilized using metal oxide nanoparticles and its photocatalytic activity. Polym. Adv. Technol. 2021, 32, 3194-3204.  doi: 10.1002/pat.5331

    64. [64]

      Kalinovskyy, Y.; Wright, A. J.; Hiscock, J. R.; Watts, T. D.; Williams, R. L.; Cooper, N. J.; Main, M. J.; Holder, S. J.; Blight, B. A. Swell and destroy: a metal-organic framework-containing polymer sponge that immobilizes and catalytically degrades nerve agents. ACS Appl. Mater. Interfaces 2020, 12, 8634-8641.  doi: 10.1021/acsami.9b18478

    65. [65]

      Wei, Y.; Zhang, Y.; Li, B.; Guan, W.; Yan, C.; Li, X.; Yan, Y. Facile synthesis of metal-organic frameworks embedded in interconnected macroporous polymer as a dual acid-base bifunctional catalyst for efficient conversion of cellulose to 5-hydroxymethylfurfural. Chin. J. Chem. Eng. 2022, 44, 169-181.  doi: 10.1016/j.cjche.2021.06.019

    66. [66]

      Zhao, J.; Zhang, Y.; Wang, K.; Yan, C.; Da, Z.; Li, C.; Yan, Y. Development of hierarchical porous MOF-based catalyst of UiO-66(Hf) and its application for 5-hydroxymethylfurfural production from cellulose. ChemistrySelect 2018, 3, 11476-11485.  doi: 10.1002/slct.201802423

    67. [67]

      Ma, C.; Wang, J.; Cao, L. Preparation of macroporous hybrid monoliths via iron-based MOFs-stabilized CO2-in-water HIPEs and use for β-amylase immobilization. Polym. Adv. Technol. 2020, 31, 2967-2979.  doi: 10.1002/pat.5019

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    3. [3]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    4. [4]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    5. [5]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    6. [6]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    7. [7]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    8. [8]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    9. [9]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    10. [10]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    11. [11]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    12. [12]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    13. [13]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    14. [14]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    15. [15]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    16. [16]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    17. [17]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    18. [18]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    19. [19]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    20. [20]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

Metrics
  • PDF Downloads(29)
  • Abstract views(1014)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return