Citation: Yuming Liu, Jingyi Li, Feixiang Wu, Yunjiao Li, Junchao Zheng, Zhenjiang He. The Multiple Modification Road of Li-Rich Manganese-Based Cathode Materials[J]. Chinese Journal of Structural Chemistry, ;2022, 41(9): 220904. doi: 10.14102/j.cnki.0254-5861.2022-0170 shu

The Multiple Modification Road of Li-Rich Manganese-Based Cathode Materials

  • Corresponding author: Zhenjiang He, hzjcsu@csu.edu.cn
  • Received Date: 21 July 2022
    Accepted Date: 12 August 2022
    Available Online: 15 August 2022

Figures(6)

  • Li-rich manganese-based cathode materials (LR) are considered as excellent cathode materials for a new generation of lithium-ion batteries causes their outstanding electrochemical performance, friendly price, and environmental friendliness. But defects such as rapid voltage decay and loss of lattice oxygen limit their applications. The electrochemical performance of LR has to be improved by means of modification. The previous single modification methods like element doping, surface coating, structure design, etc. can only optimize the electrochemical performance of LR from one aspect. Recently, multiple modifications, which can combine the advantages of multiple modifications, have been favored by researchers. Here, we comprehensively review the recent progress of multiple modification of LR based on the combination of different modification means. The review and summary of the multiple modification of LR will play a guiding role in its development in the future.
  • 加载中
    1. [1]

      Cai, M.; Zhang, H.; Zhang, Y.; Xiao, B.; Wang, L.; Li, M.; Wu, Y.; Sa, B.; Liao, H.; Zhang, L.; Chen, S.; Peng, D. -L.; Wang, M. -S.; Zhang, Q. Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere. Sci. Bull. 2022, 67, 933-945.  doi: 10.1016/j.scib.2022.02.007

    2. [2]

      Camargos, P. H.; Santos, P. H. J.; Santos, I. R.; Ribeiro, G. S.; Caetano, R. E. Perspectives on Li-ion battery categories for electric vehicle applications: a review of state of the art. Int. J. Energ. Res. 2022, er, 7993.

    3. [3]

      He, W.; Guo, W.; Wu, H.; Lin, L.; Liu, Q.; Han, X.; Xie, Q.; Liu, P.; Zheng, H.; Wang, L.; Yu, X.; Peng, D. L. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv. Mater. 2021, 33, e2005937.

    4. [4]

      Zhao, S.; Guo, Z.; Yan, K.; Wan, S.; He, F.; Sun, B.; Wang, G. Towards high-energy-density lithium-ion batteries: strategies for developing high-capacity lithium-rich cathode materials. Energy Storage Mater. 2021, 34, 716-734.  doi: 10.1016/j.ensm.2020.11.008

    5. [5]

      Li, C.; Wang, Z. -Y.; He, Z. -J.; Li, Y. -J.; Mao, J.; Dai, K. -H.; Yan, C.; Zheng, J. -C. An advance review of solid-state battery: challenges, progress and prospects. Sustain. Mater. Techno. 2021, 29, e00297.

    6. [6]

      Li, J.; Zhou, Z.; Luo, Z.; He, Z.; Zheng, J.; Li, Y.; Mao, J.; Dai, K. Microcrack generation and modification of Ni-rich cathodes for Li-ion batteries: a review. Sustain. Mater. Techno. 2021, 29, e00305.

    7. [7]

      Jiang, B.; Li, J.; Luo, B.; Yan, Q.; Li, H.; Liu, L.; Chu, L.; Li, Y.; Zhang, Q.; Li, M. LiPO2F2 electrolyte additive for high-performance Li-rich cathode material. J. Energy Chem. 2021, 60, 564-571.  doi: 10.1016/j.jechem.2021.01.024

    8. [8]

      Ke, C.; Shao, R.; Zhang, Y.; Sun, Z.; Qi, S.; Zhang, H.; Li, M.; Chen, Z.; Wang, Y.; Sa, B.; Lin, H.; Liu, H.; Wang, M. S.; Chen, S.; Zhang, Q. Synergistic engineering of heterointerface and architecture in new-type ZnS/Sn heterostructures in situ encapsulated in nitrogen-doped carbon toward high-efficient lithium-ion storage. Adv. Funct. 2022, 2205635.

    9. [9]

      Li, L.; Fu, L.; Li, M.; Wang, C.; Zhao, Z.; Xie, S.; Lin, H.; Wu, X.; Liu, H.; Zhang, L.; Zhang, Q.; Tan, L. B-doped and La4NiLiO8-coated Ni-rich cathode with enhanced structural and interfacial stability for lithium-ion batteries. J. Energy Chem. 2022, 71, 588-594.

    10. [10]

      Liu, J.; Wang, J.; Ni, Y.; Zhang, K.; Cheng, F.; Chen, J. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Mater Today 2021, 43, 132-165.

    11. [11]

      Zuo, W.; Luo, M.; Liu, X.; Wu, J.; Liu, H.; Li, J.; Winter, M.; Fu, R.; Yang, W.; Yang, Y. Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energ. Environ. Sci. 2020, 13, 4450-4497.

    12. [12]

      Chen, H.; Hu, Q.; Huang, Z.; He, Z.; Wang, Z.; Guo, H.; Li, X. Syn-thesis and electrochemical study of Zr-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion battery. Ceram 2016, 42, 263-269.

    13. [13]

      He, Z.; Li, J.; Luo, Z.; Zhou, Z.; Jiang, X.; Zheng, J.; Li, Y.; Mao, J.; Dai, K.; Yan, C.; Sun, Z. Enhancing cell performance of lithium-rich manganese-based materials via tailoring crystalline states of a coating layer. ACS Appl. Mater. 2021, 13, 49390-49401.

    14. [14]

      He, Z.; Ping, J.; Yi, Z.; Peng, C.; Shen, C.; Liu, J. Optimally designed interface of lithium rich layered oxides for lithium ion battery. J. Alloys Compd. 2017, 708, 1038-1045.

    15. [15]

      He, Z.; Wang, Z.; Chen, H.; Huang, Z.; Li, X.; Guo, H.; Wang, R. Electrochemical performance of zirconium doped lithium rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with porous hollow structure. J. Power Sources 2015, 299, 334-341.

    16. [16]

      Zhao, S.; Yan, K.; Zhang, J.; Sun, B.; Wang, G. Reaction mecha-nisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 2021, 60, 2208-2220.

    17. [17]

      Luo, Z.; Zhou, Z.; He, Z.; Sun, Z.; Zheng, J.; Li, Y. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode by surface modification using La-Co-O compound. Ceram 2021, 47, 2656-2664.

    18. [18]

      Wang, R.; Sun, Y.; Yang, K.; Zheng, J.; Li, Y.; Qian, Z.; He, Z.; Zhong, S. One-time sintering process to modify xLi2MnO3·(1-x)LiMO2 hollow architecture and studying their enhanced electrochemical performances. J Energy Chem. 2020, 50, 271-279.

    19. [19]

      Wei, H. -X.; Huang, Y. -D.; Tang, L. -B.; Yan, C.; He, Z. -J.; Mao, J.; Dai, K.; Wu, X. -W.; Jiang, J. -B.; Zheng, J. -C. Lithium-rich manganese-based cathode materials with highly stable lattice and surface enabled by perovskite-type phase-compatible layer. Nano. Energy 2021, 88, 106288.

    20. [20]

      Wei, H. -X.; Tang, L. -B.; Huang, Y. -D.; Wang, Z. -Y.; Luo, Y. -H.; He, Z. -J.; Yan, C.; Mao, J.; Dai, K. -H.; Zheng, J. -C. Comprehensive understanding of Li/Ni intermixing in layered transition metal oxides. Mater Today 2021, 51, 365-392.

    21. [21]

      Yang, S. -Q.; Wei, H. -X.; Tang, L. -B.; Yan, C.; Li, J. -H.; He, Z. -J.; Li, Y. -J.; Zheng, J. -C.; Mao, J.; Dai, K. Fast Li-ion conductor Li1+yTi2-y Aly(PO4)3 modified Li1.2[Mn0.54Ni0.13Co0.13]O2 as high performance cathode material for Li-ion battery. Ceram 2021, 47, 18397-18404.

    22. [22]

      Zheng, J. C.; Yang, Z.; Wang, P. B.; Tang, L. B.; An, C. S.; He, Z. J. Multiple linkage modification of lithium-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium ion battery. ACS Appl. Mater. Interfaces 2018, 10, 31324-31329.

    23. [23]

      Zhou, Z.; Luo, Z.; He, Z.; Zheng, J.; Li, Y.; Yan, C.; Mao, J. Suppress voltage decay of lithium-rich materials by coating layers with different crystalline states. J. Energy Chem. 2021, 60, 591-598.

    24. [24]

      Hou, X.; Yang, Y.; Mao, Y.; Song, J.; Yang, J.; Li, G.; Pan, Y.; Wang, Y.; Xie, J. Improved electrochemical performance of Li1.15Ni0.17Co0.11Mn0.57O2 by Li2O cathode additive. J. Electrochem. 2019, 166, A3387-A3390.

    25. [25]

      Huang, J.; Zhu, F.; Shu, Y.; Hu, G.; Peng, Z.; Cao, Y.; Jiang, J.; Zhang, S.; Wang, X.; Du, K. Enhanced electrochemical performance of O3-type Li0.6[Li0.2Mn0.8]O2 for lithium ion batteries via aluminum and boron dual-doping. Ceram 2021, 47, 34611-34618.

    26. [26]

      Jiang, W.; Zhang, C.; Feng, Y.; Wei, B.; Chen, L.; Zhang, R.; Ivey, D. G.; Wang, P.; Wei, W. Achieving high structure and voltage stability in cobalt-free Li-rich layered oxide cathodes via selective dual-cation doping. Energy Storage 2020, 32, 37-45.

    27. [27]

      Liu, D.; Fan, X.; Li, Z.; Liu, T.; Sun, M.; Qian, C.; Ling, M.; Liu, Y.; Liang, C. A cation/anion co-doped Li1.12Na0.08Ni0.2Mn0.6O1.95F0.05 cathode for lithium ion batteries. Nano Energy 2019, 58, 786-796.

    28. [28]

      Liu, H.; He, B.; Xiang, W.; Li, Y. C.; Bai, C.; Liu, Y. P.; Zhou, W.; Chen, X.; Liu, Y.; Gao, S.; Guo, X. Synergistic effect of uniform lattice cation/anion doping to improve structural and electrochemical performance stability for Li-rich cathode materials. Nanotechnology 2020, 31, 455704.

    29. [29]

      Sun, Y.; Wu, Q.; Zhao, L. A new doping element to improve the electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 materials for Li-ion batteries. Ceram 2019, 45, 1339-1347.

    30. [30]

      Peng, Z.; Mu, K.; Cao, Y.; Xu, L.; Du, K.; Hu, G. Enhanced electrochemical performance of layered Li-rich cathode materials for lithium ion batteries via aluminum and boron dual-doping. Ceram 2019, 45, 4184-4192.

    31. [31]

      Peralta, D.; Salomon, J.; Reynier, Y.; Martin, J. -F.; De Vito, E.; Colin, J. -F.; Boulineau, A.; Bourbon, C.; Amestoy, B.; Tisseraud, C.; Pellenc, R.; Ferrandis, J. -L.; Bloch, D.; Patoux, S. Influence of Al and F surface modifications on the sudden death effect of Si-Gr/Li1.2Ni0.2Mn0.6O2 Li-ion cells. Electrochimi. Acta 2021, 400, 139419.

    32. [32]

      Sun, Y.; Zhang, L.; Dong, S.; Zeng, J.; Shen, Y.; Li, X.; Ren, X.; Ma, L.; Hai, C.; Zhou, Y. Improving the electrochemical performances of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 through cooperative doping of Na+ and Mg2+. Electrochimi. Acta 2022, 414, 140169.

    33. [33]

      Tang, Y.; Chen, S. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries co-modified by lanthanum and aluminum. Ionics 2021, 27, 935-948.

    34. [34]

      Zhu, H.; Xiao, Y.; Dong, J.; Zhang, D.; Chang, C. New composite Li1.4Mn0.61Ni0.18Co0.18Al0.03O2.4 and LiNi0.5Mn1.5O3.9F0.1 cathode material with higher specific capacity and better capacity retention. Ionics 2020, 26, 3749-3760.

    35. [35]

      Sun, K.; Peng, C.; Li, Z.; Xiao, Q.; Lei, G.; Xiao, Q.; Ding, Y.; Hu, Z. Hybrid LiV3O8/carbon encapsulated Li1.2Mn0.54Co0.13Ni0.13O2 with improved electrochemical properties for lithium ion batteries. RSC Advances 2016, 6, 28729-28736.

    36. [36]

      Lai, X.; Hu, G.; Peng, Z.; Tong, H.; Lu, Y.; Wang, Y.; Qi, X.; Xue, Z.; Huang, Y.; Du, K.; Cao, Y. Surface structure decoration of high capacity Li1.2Mn0.54Ni0.13Co0.13O2 cathode by mixed conductive coating of Li1.4Al0.4Ti1.6(PO4)3 and polyaniline for lithium-ion batteries. J. Power Sources 2019, 431, 144-152.

    37. [37]

      Zhang, W.; Liu, Y.; Wu, J.; Shao, H.; Yang, Y. Surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material with Al2O3/SiO2 composite for lithium-ion batteries. J. Electrochem. 2019, 166, A863-A872.

    38. [38]

      Zhu, W.; Tai, Z.; Shu, C.; Chong, S.; Guo, S.; Ji, L.; Chen, Y.; Liu, Y. The superior electrochemical performance of a Li-rich layered cathode material with Li-rich spinel Li4Mn5O12 and MgF2 double surface modifications. J. Mater. 2020, 8, 7991-8001.

    39. [39]

      Li, M.; Zhou, Y.; Wu, X.; Duan, L.; Zhang, C.; Zhang, F.; He, D. The combined effect of CaF2 coating and La-doping on electrochemical performance of layered lithium-rich cathode material. Electrochimi. Acta 2018, 275, 18-24.

    40. [40]

      Li, S.; Fu, X.; Liang, Y.; Wang, S.; Zhou, X. A.; Dong, H.; Tuo, K.; Gao, C.; Cui, X. Enhanced structural stability of boron-doped layered@spinel @carbon heterostructured lithium-rich manganese-based cathode materials. ACS Sustain. 2020, 8, 9311-9324.

    41. [41]

      Shen, C.; Liu, Y.; Li, W.; Liu, X.; Xie, J.; Jiang, J.; Jiang, Y.; Zhao, B.; Zhang, J. One-pot synthesis and multifunctional surface modification of lithium-rich manganese-based cathode for enhanced structural stability and low-temperature performance. J. Colloid Inter. Sci. 2022, 615, 1-9.

    42. [42]

      Tai, Z.; Zhu, W.; Shi, M.; Xin, Y.; Guo, S.; Wu, Y.; Chen, Y.; Liu, Y. Improving electrochemical performances of lithium-rich oxide by cooperatively doping Cr and coating Li3PO4 as cathode material for lithium-ion batteries. J Colloid Interface Sci. 2020, 576, 468-475.

    43. [43]

      Li, W.; Zhao, B.; Bai, J.; Ma, H.; Li, K.; Wang, P.; Mao, Y.; Zhu, X.; Sun, Y. Rate performance modification of a lithium-rich manganese-based material through surface self-doping and coating strategies. Langmuir 2021, 37, 3223-3230.

    44. [44]

      Niu, B.; Li, J.; Liu, Y.; Li, Z.; Yang, Z. Re-understanding the function mechanism of surface coating, modified Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathodes with YF3 for high performance lithium-ions batteries. Ceram 2019, 45, 12484-12494.

    45. [45]

      Ren, X.; Li, D.; Zhao, Z.; Chen, G.; Zhao, K.; Kong, X.; Li, T. Dual effect of aluminum doping and lithium tungstate coating on the surface improves the cycling stability of lithium-rich manganese-based cathode materials. Acta Chim. Sinica 2020, 78, 1268-1274.

    46. [46]

      Xie, Y.; Chen, S.; Lin, Z.; Yang, W.; Zou, H.; Sun, R. W. -Y. Enhanced electrochemical performance of Li-rich layered oxide, Li1.2Mn0.54Co0.13Ni0.13O2, by surface modification derived from a MOF-assisted treatment. Electrochem. Commun. 2019, 99, 65-70.

    47. [47]

      Zhai, Y.; Zhang, J.; Zhang, H.; Liu, X.; Wang, C. -W.; Sun, L.; Liu, X. The synergic effects of Zr doping and Li2TiO3 coating on the crystal structure and electrochemical performances of Li-rich Li1.2Ni0.2Mn0.6O2. J. Electrochem. 2019, 166, A1323-A1329.

    48. [48]

      Zhang, C.; Feng, Y.; Wei, B.; Liang, C.; Zhou, L.; Ivey, D. G.; Wang, P.; Wei, W. Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode. Nano Energy 2020, 75, 104995.

    49. [49]

      Zhang, J.; Zhang, H.; Gao, R.; Li, Z.; Hu, Z.; Liu, X. New insights into the modification mechanism of Li-rich Li1.2Mn0.6Ni0.2O2 coated by Li2ZrO3. Phys. Chem. Chem. Phys. 2016, 18, 13322-13331.

    50. [50]

      Luo, D.; Ding, X.; Hao, X.; Xie, H.; Cui, J.; Liu, P.; Yang, X.; Zhang, Z.; Guo, J.; Sun, S.; Lin, Z. Ni/Mn and Al dual concentration-gradients to mitigate voltage decay and capacity fading of Li-rich layered cathodes. ACS Energy Lett. 2021, 6, 2755-2764.

    51. [51]

      Cao, F.; Zeng, W.; Zhu, J.; Xiao, J.; Li, Z.; Li, M.; Qin, R.; Wang, T.; Chen, J.; Yi, X.; Wang, J.; Mu, S. Inhibiting Mn migration by Sb-pinning transition metal layers in lithium-rich cathode material for stable high-capacity properties. Small 2022, 18, e2200713.

    52. [52]

      Li, H.; Jian, Z.; Yang, P.; Li, J.; Xing, Y.; Zhang, S. Niobium doping of Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials with enhanced structural stability and electrochemical performance. Ceram 2020, 46, 23773-23779.

    53. [53]

      Liu, H.; Xiang, W.; Bai, C.; Qiu, L.; Wu, C.; Wang, G.; Liu, Y.; Song, Y.; Wu, Z. -G.; Guo, X. Enabling superior electrochemical performance of lithium-rich Li1.2Ni0.2Mn0.6O2 cathode materials by surface integration. Ind. Eng. Chem. Res. 2020, 59, 19312-19321.

    54. [54]

      Zhang, C.; Wei, B.; Jiang, W.; Wang, M.; Hu, W.; Liang, C.; Wang, T.; Chen, L.; Zhang, R.; Wang, P.; Wei, W. Insights into the enhanced structural and thermal stabilities of Nb-substituted lithium-rich layered oxide cathodes. ACS Appl. Mater. Interfaces 2021, 13, 45619-45629.

    55. [55]

      Luo, D.; Ding, X.; Fan, J.; Zhang, Z.; Liu, P.; Yang, X.; Guo, J.; Sun, S.; Lin, Z. Accurate control of initial coulombic efficiency for lithium-rich manganese-based layered oxides by surface multicomponent integration. Angew. Chem. Int. Ed. 2020, 59, 23061-23066.

    56. [56]

      Luo, D.; Cui, J.; Zhang, B.; Fan, J.; Liu, P.; Ding, X.; Xie, H.; Zhang, Z.; Guo, J.; Pan, F.; Lin, Z. Ti-based surface integrated layer and bulk doping for stable voltage and long life of Li-rich layered cathodes. Adv. Funct. 2021, 31, 2009310.

    57. [57]

      Xu, L.; Meng, J.; Yang, P.; Xu, H.; Zhang, S. Cesium-doped layered Li1.2Mn0.54Ni0.13Co0.13O2 cathodes with enhanced electrochemical performance. Solid State Ionics 2021, 361, 115551.

    58. [58]

      Wang, Q.; He, W.; Wang, L.; Li, S.; Zheng, H.; Liu, Q.; Cai, Y.; Lin, J.; Xie, Q.; Peng, D. -L. Morphology control and Na+ doping toward high-performance Li-rich layered cathode materials for lithium-ion batteries. ACS Sustain. Chem. Eng. 2020, 9, 197-206.

    59. [59]

      Guo, H.; Jia, K.; Han, S.; Zhao, H.; Qiu, B.; Xia, Y.; Liu, Z. Ultrafast heterogeneous nucleation enables a hierarchical surface configuration of lithium-rich layered oxide cathode material for enhanced electrochemical performances. Adv. Mater. Interfaces 2018, 5, 1701465.

    60. [60]

      He, W.; Zhang, C.; Wang, M.; Wei, B.; Zhu, Y.; Wu, J.; Liang, C.; Chen, L.; Wang, P.; Wei, W. Countering voltage decay, redox sluggishness, and calendering incompatibility by near-zero-strain interphase in lithium-rich, manganese-based layered oxide electrodes. Adv. Funct. 2022, 32, 2200322.

    61. [61]

      Wu, J.; Li, H.; Liu, Y.; Ye, Y.; Yang, Y. In situ reconstruction of the spinel interface on a Li-rich layered cathode material with enhanced electrochemical performances through HEPES and heat treatment strategy. ACS Sustain. Chem. Eng. 2022, 10, 6165-6180.

    62. [62]

      Ku, L.; Cai, Y.; Ma, Y.; Zheng, H.; Liu, P.; Qiao, Z.; Xie, Q.; Wang, L.; Peng, D. -L. Enhanced electrochemical performances of layered-spinel heterostructured lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. Chem. Eng. 2019, 370, 499-507.

    63. [63]

      Park, K.; Kim, J.; Park, J. -H.; Hwang, Y.; Han, D. Synchronous phase transition and carbon coating on the surface of Li-rich layered oxide cathode materials for rechargeable Li-ion batteries. J. Power Sources 2018, 408, 105-110.

    64. [64]

      Ran, X.; Tao, J.; Chen, Z.; Yan, Z.; Yang, Y.; Li, J.; Lin, Y.; Huang, Z. Surface heterostructure induced by TiO2 modification in Li-rich cathode materials for enhanced electrochemical performances. Electrochimi. Acta 2020, 353, 135959.

    65. [65]

      Yang, Z.; Zhong, J.; Li, J.; Liu, Y.; Niu, B.; Kang, F. Li-rich layered oxide coated by nanoscale MoOx film with oxygen vacancies and lower oxidation state as a high-performance cathode material. Ceram 2019, 45, 439-448.

    66. [66]

      Yuan, S.; Guo, J.; Ma, Y.; Zhou, Y.; Zhang, H.; Song, D.; Shi, X.; Zhang, L. Improving the electrochemical performance of a lithium-rich layered cathode with an in situ transformed layered@spinel@spinel heterostructure. ACS Appl. Energy Mater. 2021, 4, 11014-11025.

    67. [67]

      Yang, J.; Li, P.; Zhong, F.; Feng, X.; Chen, W.; Ai, X.; Yang, H.; Xia, D.; Cao, Y. Suppressing voltage fading of Li-rich oxide cathode via building a well-protected and partially-protonated surface by polyacrylic acid binder for cycle-stable Li-ion batteries. Adv Energy Mater. 2020, 10, 1904264.

    68. [68]

      Yang, K.; Liu, Y.; Niu, B.; Yang, Z.; Li, J. Oxygen vacancies in CeO2 surface coating to improve the activation of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. Ionics 2018, 25, 2027-2034.

    69. [69]

      Huang, C.; Wang, Z.; Wang, H.; Huang, D.; Zhao, J. -W.; Zhao, S. -X. In-situ construction of extra ion-store sites and fast ion-diffusion channels for lithium-rich manganese-based oxides cathode. J. Power Sources 2022, 535, 231437.

    70. [70]

      Ding, X.; Li, Y. X.; He, X. D.; Liao, J. Y.; Hu, Q.; Chen, F.; Zhang, X. Q.; Zhao, Y.; Chen, C. H. Surface Li+/K+ exchange toward double-gradient modification of layered li-rich cathode materials. ACS Appl. Mater. Interfaces 2019, 11, 31477-31483.

    71. [71]

      Li, Q.; Zhou, D.; Zhang, L.; Ning, D.; Chen, Z.; Xu, Z.; Gao, R.; Liu, X.; Xie, D.; Schumacher, G.; Liu, X. Tuning anionic redox activity and reversibility for a high-capacity Li-rich Mn-based oxide cathode via an integrated strategy. Adv. Funct. 2019, 29, 1806706.

    72. [72]

      Liu, Q.; Xie, T.; Xie, Q.; He, W.; Zhang, Y.; Zheng, H.; Lu, X.; Wei, W.; Sa, B.; Wang, L.; Peng, D. L. Multiscale deficiency integration by Na-rich engineering for high-stability Li-rich layered oxide cathodes. ACS Appl. Mater. Interfaces 2021, 13, 8239-8248.

    73. [73]

      Chen, H.; He, Z.; Huang, Z.; Song, L.; Shen, C.; Liu, J. The effects of multifunctional coating on Li-rich cathode material with hollow spherical structure for Li ion battery. Ceram 2017, 43, 8616-8624.

    74. [74]

      Meng, J.; Xu, L.; Ma, Q.; Yang, M.; Fang, Y.; Wan, G.; Li, R.; Yuan, J.; Zhang, X.; Yu, H.; Liu, L.; Liu, T. Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes. Adv. Funct. 2022, 32, 2113013.

    75. [75]

      Mezaal, M. A.; Qu, L.; Li, G.; Zhang, R.; Xuejiao, J.; Zhang, K.; Liu, W.; Lei, L. Promoting the cyclic and rate performance of lithium-rich ternary materials via surface modification and lattice expansion. RSC Advances 2015, 5, 93048-93056.

    76. [76]

      Chen, J.; Huang, Z.; Zeng, W.; Ma, J.; Cao, F.; Wang, T.; Tian, W.; Mu, S. Surface engineering and trace cobalt doping suppress overall Li/Ni mixing of Li-rich Mn-based cathode materials. ACS Appl. Mater. Interfaces 2022, 14, 6649-6657.

    77. [77]

      Phattharasupakun, N.; Geng, C.; Johnson, M. B.; Väli, R.; Liu, A.; Liu, Y.; Sawangphruk, M.; Dahn, J. R. Impact of Al doping and surface coating on the electrochemical performances of Li-rich Mn-rich Li1.11Ni0.33Mn0.56O2 positive electrode material. J. Electrochem. 2020, 167, 120531.

    78. [78]

      Chen, J.; Zou, G.; Deng, W.; Huang, Z.; Gao, X.; Liu, C.; Yin, S.; Liu, H.; Deng, X.; Tian, Y.; Li, J.; Wang, C.; Wang, D.; Wu, H.; Yang, L.; Hou, H.; Ji, X. Pseudo-bonding and electric-field harmony for Li-rich Mn-based oxide cathode. Adv. Funct. 2020, 30, 2004302.

    79. [79]

      Shi, Z.; Gu, Q.; Yun, L.; Wei, Z.; Hu, D.; Qiu, B.; Chen, G. Z.; Liu, Z. A composite surface configuration towards improving cycling stability of Li-rich layered oxide materials. J. Mater. 2021, 9, 24426-24437.

  • 加载中
    1. [1]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    2. [2]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    3. [3]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    4. [4]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    5. [5]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    6. [6]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    7. [7]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    8. [8]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    9. [9]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    10. [10]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    11. [11]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    12. [12]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    13. [13]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    14. [14]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    15. [15]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    16. [16]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    17. [17]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    18. [18]

      Chang LiuZirui SongXinglan DengShihong XuRenji ZhengWentao DengHongshuai HouGuoqiang ZouXiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081

    19. [19]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    20. [20]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

Metrics
  • PDF Downloads(29)
  • Abstract views(801)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return