Citation: Shi Cheng, Qianqian Xiong, Chengxiao Zhao, Xiaofei Yang. Synergism of 1D CdS/2D Modified Ti3C2Tx MXene Heterojunctions for Boosted Photocatalytic Hydrogen Production[J]. Chinese Journal of Structural Chemistry, ;2022, 41(8): 220805. doi: 10.14102/j.cnki.0254-5861.2022-0151 shu

Synergism of 1D CdS/2D Modified Ti3C2Tx MXene Heterojunctions for Boosted Photocatalytic Hydrogen Production

Figures(6)

  • Rational design and controllable synthesis of visible-light-responsive photocatalysts that exhibit both good hydrogen-producing efficiency and stability in the water splitting reaction are undoubtedly a challenge. Here we report an integrated CdS nanorod/oxygen-terminated Ti3C2Tx MXene nanosheet heterojunction with a high catalytic hydrogen evolution reaction (HER) activity. By incorporating one-dimensional (1D) CdS nanorods onto annealed ultrathin two-dimensional (2D) MXene nanosheets, the mixed-dimensional 1D/2D heterojunction achieved a hydrogen-evolving rate of 8.87 mmol⋅g-1⋅h-1, much higher than that of bulk CdS and CdS/unmodified MXene hybrid catalysts. The enhanced HER activity and stability of the designed heterojunction catalyst are attributed to the presence of oxygen-containing terminal groups on the surface of thermally treated Ti3C2Tx MXene, extended light absorption spectra as well as the precisely constructed intimate Schottky contact, implying an accelerated interfacial charge transfer and efficient, long-term photocatalytic hydrogen production performance. The results demonstrate that oxygen-terminated 2D MXene can be well utilized as a functional platform for the development of novel heterojunction photocatalysts.
  • 加载中
    1. [1]

      Bai, X. J.; Hou, S. S.; Wang, X. Y.; Hao, D.; Sun, B. X.; Jia, T. Q.; Shi, R.; Ni, B. J. Mechanism of surface and interface engineering under diverse dimensional combinations: the construction of efficient nanostructured MXene-based photocatalysts. Catal. Sci. Technol. 2021, 11, 5028-5049.  doi: 10.1039/D1CY00803J

    2. [2]

      Tang, M. L.; Ao, Y. H.; Wang, P. F.; Wang, C. All-solid-state Z-scheme WO3 nanorod/ZnIn2S4 composite photocatalysts for the effective degra-dation of nitenpyram under visible light irradiation. J. Hazard. Mater. 2020, 387, 121713.  doi: 10.1016/j.jhazmat.2019.121713

    3. [3]

      Li, K. Y.; Chen, J.; Ao, Y. H.; Wang, P. F. Preparation of a ternary g-C3N4-CdS/Bi4O5I2 composite photocatalysts with two charge transfer pathways for efficient degradation of acetaminophen under visible light irradiation. Sep. Purif. Technol. 2021, 259, 118177.  doi: 10.1016/j.seppur.2020.118177

    4. [4]

      Duan, C. X.; Yu, Y.; Xiao, J.; Li, Y. Y.; Yang, P. F.; Hu, F.; Xi, H. X. Recent advancements in metal-organic frameworks for green applications. Green Energy Environ. 2021, 6, 33-49.  doi: 10.1016/j.gee.2020.04.006

    5. [5]

      He, B.; Feng, M.; Chen, X. Y.; Sun, J. Multidimensional (0D-3D) functional nanocarbon: promising material to strengthen the photocatalytic activity of graphitic carbon nitride. Green Energy Environ. 2021, 6, 823-845.  doi: 10.1016/j.gee.2020.07.011

    6. [6]

      Yang, X. F.; Liu, W.; Han, C. H.; Zhao, C. X.; Tang, H.; Liu, Q. Q.; Xu, J. S. Mechanistic insights into charge carrier dynamics in MoSe2/CdS heterojunctions for boosted photocatalytic hydrogen evolution. Mater. Today Phys. 2020, 15, 110261.

    7. [7]

      Lu, Y.; Cui, X. K.; Zhao, C. X.; Yang, X. F. Highly efficient tandem Z-scheme heterojunctions for visible light-based photocatalytic oxygen evolution reaction. Water Sci. Eng. 2020, 13, 299-306.

    8. [8]

      Yang, H.; Zhang, J. F.; Dai, K. Organic amine surface modified one-dimensional CdSe0.8S0.2-diethylenetriamine/two-dimensional SnNb2O6 S-scheme heterojunction with promoted visible-light-driven photocatalytic CO2 reduction. Chin. J. Catal. 2022, 43, 255-264.  doi: 10.1016/S1872-2067(20)63784-6

    9. [9]

      Di, T.; Cheng, B.; Ho, W.; Yu, J.; Tang, H. Hierarchically CdS-Ag2S nanocomposites for efficient photocatalytic H2 production. Appl. Surf. Sci. 2019, 470, 196-204.

    10. [10]

      Kuang, P.; Low, J.; Cheng, B.; Yu, J.; Fan, J. MXene-based photo-catalysts. J. Mater. Sci. & Tech. 2020, 56, 18-44.

    11. [11]

      Ran, J.; Gao, G.; Li, F. T.; Ma, T. Y.; Du, A.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.  doi: 10.1038/ncomms13907

    12. [12]

      Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 2012, 24, 229-251.

    13. [13]

      Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-based photo-catalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-6570.

    14. [14]

      Kubacka, A.; Fernandez-Garcia, M.; Colon, G. Advanced nano-architectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555-1614.

    15. [15]

      Zhang, J. F.; Fu, J. W.; Dai, K. Graphitic carbon nitride/antimonene van der waals heterostructure with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 2022, 116, 192-198.

    16. [16]

      Che, H. N.; Gao, X.; Chen, J.; Hou, J.; Ao, Y. H.; Wang, P. F. Iodide-induced fragmentation of polymerized hydrophilic carbon nitride for high-performance quasi-homogeneous photocatalytic H2O2 production. Angew. Chem. Int. Edit. 2021, 60, 25546-25550.

    17. [17]

      Li, J. H.; Ren, J.; Hao, Y. J.; Zhou, E. P.; Wang, Y.; Wang, X. J.; Su, R.; Liu, Y.; Qi, X. H.; Li, F. T. Construction of β-Bi2O3/Bi2O2CO3 hetero-junction photocatalyst for deep understanding the importance of sepa-ration efficiency and valence band position. J. Hazard. Mater. 2021, 401, 123262.

    18. [18]

      Tang, M. L.; Ao, Y. H.; Wang, C.; Wang, P. F. Rationally constructing of a novel dual Z-scheme composite photocatalyst with significantly enhanced performance for neonicotinoid degradation under visible light irradiation. Appl. Catal. B-Environ. 2020, 270, 118918.

    19. [19]

      Guo, Y.; Ao, Y. H.; Wang, P. F.; Wang, C. Mediator-free direct dual-Z-scheme Bi2S3/BiVO4/MgIn2S4 composite photocatalysts with enhanced visible-light-driven performance towards carbamazepine degradation. Appl. Catal. B-Environ. 2019, 254, 479-490.

    20. [20]

      Li, J. N.; Chen, J.; Ao, Y. H.; Gao, X.; Che, H. N.; Wang, P. F. Prominent dual Z-scheme mechanism on phase junction WO3/CdS for enhanced visible-light-responsive photocatalytic performance on imidacloprid degra-dation. Sep. Purif. Technol. 2022, 281, 119863.

    21. [21]

      Mao, L.; Cai, X. Y.; Zhu, M. S. Hierarchically 1D CdS decorated on 2D perovskite-type La2Ti2O7 nanosheet hybrids with enhanced photocatalytic performance. Rare Metals 2021, 40, 1067-1076.

    22. [22]

      Fan, Y. S.; Xi, X. L.; Liu, Y. S.; Nie, Z. R.; Zhao, L. Y.; Zhang, Q. H. Regulation of morphology and visible light-driven photocatalysis of WO3 nanostructures by changing pH. Rare Metals 2021, 40, 1738-1745.

    23. [23]

      Zhao, Z. W.; Li, X. F.; Dai, K.; Zhang, J. F.; Dawson, G. In-situ fabrication of Bi2S3/BiVO4/Mn0.5Cd0.5S-DETA ternary S-scheme hetero-structure with effective interface charge separation and CO2 reduction performance. J. Mater. Sci. Technol. 2022, 117, 109-119.

    24. [24]

      Huang, Y.; Mei, F. F.; Zhang, J. F.; Dai, K.; Dawson, G. Construction of 1D/2D W18O49/porous g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2 evolution. Acta Phys. -Chim. Sin. 2022, 38, 2108028.

    25. [25]

      Liu, Y.; Guo, J. G.; Wang, Y.; Hao, Y. J.; Liu, R. H.; Li, F. T. One-step synthesis of defected Bi2Al4O9/β-Bi2O3 heterojunctions for photocatalytic reduction of CO2 to CO. Green Energy Environ. 2021, 6, 244-252.

    26. [26]

      Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362-1391.

    27. [27]

      Ding, C.; Zhao, C.; Cheng, S.; Yang, X. Mixed-dimensional 1D CdS/2D MoSe2 heterostructures for high-performance photocatalytic hydrogen production. Surf. Interfaces 2021, 25, 101192.

    28. [28]

      Wang, T.; Chai, Y.; Ma, D.; Chen, W.; Zheng, W.; Huang, S. Multi-dimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photo-catalytic and photoelectrochemical applications. J. Nano Res. 2017, 10, 2699-2711.

    29. [29]

      Liu, X.; Sayed, M.; Bie, C.; Cheng, B.; Hu, B.; Yu, J.; Zhang, L. Hollow CdS-based photocatalysts. J. Materiomics 2021, 7, 419-439.

    30. [30]

      Tang, S.; Xia, Y.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. Enhanced photocatalytic H2 production performance of cds hollow spheres using C and Pt as bi-cocatalysts. Chin. J. Catal. 2021, 42, 743-752.

    31. [31]

      Feng, R.; Wan, K.; Sui, X.; Zhao, N.; Li, H.; Lei, W.; Yu, J.; Liu, X.; Shi, X.; Zhai, M.; Liu, G.; Wang, H.; Zheng, L.; Liu, M. Anchoring single Pt atoms and black phosphorene dual co-catalysts on CdS nanospheres to boost visible-light photocatalytic H2 evolution. Nano Today 2021, 37, 101080.

    32. [32]

      Ding, M. Y.; Xiao, R.; Zhao, C. X.; Bukhvalov, D.; Chen, Z. P.; Xu, H. T.; Tang, H.; Xu, J. S.; Yang, X. F. Evidencing interfacial charge transfer in 2D CdS/2D MXene schottky heterojunctions toward high-efficiency photo-catalytic hydrogen production. Sol. RRL 2021, 5, 2000414.

    33. [33]

      Li, Y. L.; Wang, X. J.; Hao, Y. J.; Zhao, J.; Liu, Y.; Mu, H. Y.; Li, F. T. Rational design of stratified material with spatially separated catalytic sites as an efficient overall water-splitting photocatalyst. Chin. J. Catal. 2021, 42, 1040-1050.

    34. [34]

      Xiao, R.; Zhao, C. X.; Zou, Z. Y.; Chen, Z. P.; Tian, L.; Xu, H. T.; Tang, H.; Liu, Q. Q.; Lin, Z. X.; Yang, X. F. In situ fabrication of 1D CdS nano-rod/2D Ti3C2 MXene nanosheet schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl. Catal. B-Environ. 2020, 268, 118382.

    35. [35]

      Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633-7644.

    36. [36]

      Zulfiqar, S.; Liu, S.; Rahman, N.; Tang, H.; Shah, S.; Yu, X. H.; Liu, Q. Q. Construction of S-scheme MnO2@CdS heterojunction with core-shell structure as H2-production photocatalyst. Rare Metals 2021, 40, 2381-2391.

    37. [37]

      Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    38. [38]

      Zhao, C. X.; Yang, X. F.; Han, C. H.; Xu, J. S. Sacrificial agent-free photocatalytic oxygen evolution from water splitting over Ag3PO4/MXene hybrids. Sol. RRL 2020, 4, 1900434.

    39. [39]

      Tan, Z. L.; Wei, J. X.; Liu, Y.; Zaman, F. U.; Rehman, W.; Hou, L. R.; Yuan, C. Z. V2CTx Mxene and its derivatives: synthesis and recent progress in electrochemical energy storage applications. Rare Metals 2022, 41, 775-797.

    40. [40]

      Lu, M.; Li, H.; Han, W.; Chen, J.; Shi, W.; Wang, J.; Meng, X. -M.; Qi, J.; Li, H.; Zhang, B.; Zhang, W.; Zheng, W. 2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries. J. Energy Chem. 2019, 31, 148-153.

    41. [41]

      Huang, X.; Wu, P. A facile, high‐yield, and freeze‐and‐thaw‐assisted approach to fabricate MXene with plentiful wrinkles and its application in on‐chip micro‐supercapacitors. Adv. Funct. Mater. 2020, 30, 1910048.

    42. [42]

      Amiri, A.; Chen, Y.; Bee Teng, C.; Naraghi, M. Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Stor. Mater. 2020, 25, 731-739.

    43. [43]

      Xi, Q.; Yue, X.; Feng, J.; Liu, J.; Zhang, X.; Zhang, C.; Wang, Y.; Wang, Y.; Lv, Z.; Li, R.; Fan, C. Facile synthesis of 2D Bi4O5Br2/2D thin layer-Ti3C2 for improved visible-light photocatalytic hydrogen evolution. J. Solid State. Chem. 2020, 289, 121470.

    44. [44]

      Pang, S. Y.; Wong, Y. T.; Yuan, S.; Liu, Y.; Tsang, M. K.; Yang, Z.; Huang, H.; Wong, W. T.; Hao, J. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 2019, 141, 9610-9616.

    45. [45]

      Kuang, P.; He, M.; Zhu, B.; Yu, J.; Fan, K.; Jaroniec, M. 0D/2D NiS2/V-MXene composite for electrocatalytic H2 evolution. J. Catal. 2019, 375, 8-20.

    46. [46]

      Oschinski, H.; Morales-García, Á.; Illas, F. Interaction of first row transition metals with M2C (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) MXenes: a quest for single-atom catalysts. J. Phys. Chem. C. 2021, 125, 2477-2484.

    47. [47]

      Li, J. -Y.; Li, Y. -H.; Zhang, F.; Tang, Z. -R.; Xu, Y. -J. Visible-light-driven integrated organic synthesis and hydrogen evolution over 1D/2D CdS-Ti3C2Tx MXene composites. Appl. Catal. B-Environ. 2020, 269, 118783.

    48. [48]

      Zhao, X.; Wang, Z.; Dong, J.; Huang, T.; Zhang, Q.; Zhang, L. Annealing modification of MXene films with mechanically strong structures and high electrochemical performance for supercapacitor applications. J. Power Sources 2020, 470, 228356.

    49. [49]

      Han, M.; Yin, X.; Wu, H.; Hou, Z.; Song, C.; Li, X.; Zhang, L.; Cheng, L. Ti3C2 MXenes with modified surface for high-performance electro-magnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 2016, 8, 21011-21019.

    50. [50]

      VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, 1581.

    51. [51]

      Li, J.; Yuan, X.; Lin, C.; Yang, Y.; Xu, L.; Du, X.; Xie, J.; Lin, J.; Sun, J. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 2017, 7, 1602725.

    52. [52]

      Zhang, Q.; Teng, J.; Zou, G.; Peng, Q.; Du, Q.; Jiao, T.; Xiang, J. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 2016, 8, 7085-7093.

    53. [53]

      Li, Z.; Wang, L.; Sun, D.; Zhang, Y.; Liu, B.; Hu, Q.; Zhou, A. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng. C 2015, 191, 33-40.

    54. [54]

      Feng, X. Y.; Wang, P. F.; Hou, J.; Qian, J.; Ao, Y. H.; Wang, C. Significantly enhanced visible light photocatalytic efficiency of phos-phorus doped TiO2 with surface oxygen vacancies for ciprofloxacin degradation: synergistic effect and intermediates analysis. J. Hazard. Mater. 2018, 351, 196-205.

    55. [55]

      Feng, C.; Chen, Z.; Hou, J.; Li, J.; Li, X.; Xu, L.; Sun, M.; Zeng, R. Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light. Chem. Eng. J. 2018, 345, 404-413.

    56. [56]

      Ding, M.; Xiao, R.; Zhao, C.; Bukhvalov, D.; Chen, Z.; Xu, H.; Tang, H.; Xu, J.; Yang, X. Evidencing interfacial charge transfer in 2D CdS/2D MXene schottky heterojunctions toward high-efficiency photocatalytic hydrogen production. Sol. RRL 2020, 5, 2000414.

    57. [57]

      Han, B.; Liu, S.; Zhang, N.; Xu, Y. -J.; Tang, Z. -R. One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light. Appl. Catal. B-Environ. 2017, 202, 298-304.

    58. [58]

      Zhao, C.; Chen, Z.; Xu, J.; Liu, Q.; Xu, H.; Tang, H.; Li, G.; Jiang, Y.; Qu, F.; Lin, Z.; Yang, X. Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets. Appl. Catal. B-Environ. 2019, 256, 117867.

    59. [59]

      Zhang, T.; Hou, Y.; Dzhagan, V.; Liao, Z. Q.; Chai, G. L.; Loffler, M.; Olianas, D.; Milani, A.; Xu, S. Q.; Tommasini, M.; Zahn, D. R. T.; Zheng, Z. K.; Zschech, E.; Jordan, R.; Feng, X. L. Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes. Nat. Commun. 2018, 9, 1140.

  • 加载中
    1. [1]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    2. [2]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    3. [3]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    4. [4]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    5. [5]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    6. [6]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    7. [7]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    8. [8]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    9. [9]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    10. [10]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    11. [11]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    12. [12]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    13. [13]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    14. [14]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    18. [18]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    19. [19]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    20. [20]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

Metrics
  • PDF Downloads(6)
  • Abstract views(289)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return